SENSKIN | ' SENsing SKIN' for Monitoring-Based Maintenance of the Transport Infrastructure (SENSKIN)

Summary
Structural Health Monitoring (SHM) is expected to play a predominant role in the management of the transport infrastructure. Yet, SHM techniques continue to rely on point-based, as opposed to spatial, sensing requiring a dense network of these point-sensors increasing considerably the monitoring cost. Additionally, commercially available, strain sensors cannot measure strains beyond 1% to 2% and, thus, are not able to provide an alarm for an imminent catastrophe.
SENSKIN aims to:
(a) develop a dielectric-elastomer and micro-electronics-based skin-like sensing solution for the structural monitoring of the transport infrastructure that will offer spatial sensing of reversible (repeated) strains in the range of 0.012% to more than 10%, that requires little power to operate, is easy to install on an irregular surface, is low cost compared to existing sensors, allows simple signal processing and includes the ability of self-monitoring and self-reporting.
(b) use the new and emerging technology of Delay Tolerant Network to secure that strain measurements acquired through the 'sensing skin' will reach the base station even under extreme environmental conditions and natural disaster events such as, high winds or an earthquake, where some communication networks could become inoperable.
(c) develop a Decision-Support-System for proactive condition-based structural intervention under operating loads and intervention after extreme events. It will be based on an accurate structural assessment based on input from the strain sensors in (a) above and will examine the life-cycle economic, social and environmental implications of the feasible rehabilitation options and the resilience of the infrastructure to future changes in traffic demand that these options offer.
(d) implement the above in the case of bridges and test, refine, evaluate and benchmark the monitoring system (integrated a and b) and package (integrated a, b and c) on actual bridges.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/635844
Start date: 01-06-2015
End date: 31-05-2019
Total budget - Public funding: 3 883 041,63 Euro - 3 883 041,00 Euro
Cordis data

Original description

Structural Health Monitoring (SHM) is expected to play a predominant role in the management of the transport infrastructure. Yet, SHM techniques continue to rely on point-based, as opposed to spatial, sensing requiring a dense network of these point-sensors increasing considerably the monitoring cost. Additionally, commercially available, strain sensors cannot measure strains beyond 1% to 2% and, thus, are not able to provide an alarm for an imminent catastrophe.
SENSKIN aims to:
(a) develop a dielectric-elastomer and micro-electronics-based skin-like sensing solution for the structural monitoring of the transport infrastructure that will offer spatial sensing of reversible (repeated) strains in the range of 0.012% to more than 10%, that requires little power to operate, is easy to install on an irregular surface, is low cost compared to existing sensors, allows simple signal processing and includes the ability of self-monitoring and self-reporting.
(b) use the new and emerging technology of Delay Tolerant Network to secure that strain measurements acquired through the 'sensing skin' will reach the base station even under extreme environmental conditions and natural disaster events such as, high winds or an earthquake, where some communication networks could become inoperable.
(c) develop a Decision-Support-System for proactive condition-based structural intervention under operating loads and intervention after extreme events. It will be based on an accurate structural assessment based on input from the strain sensors in (a) above and will examine the life-cycle economic, social and environmental implications of the feasible rehabilitation options and the resilience of the infrastructure to future changes in traffic demand that these options offer.
(d) implement the above in the case of bridges and test, refine, evaluate and benchmark the monitoring system (integrated a and b) and package (integrated a, b and c) on actual bridges.

Status

CLOSED

Call topic

MG-8.1a-2014

Update Date

27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.4. SOCIETAL CHALLENGES - Smart, Green And Integrated Transport
H2020-EU.3.4.0. Cross-cutting call topics
H2020-MG-2014_TwoStages
MG-8.1a-2014 Smarter design, construction and maintenance