PANTHER | Performant Alternative to Nickel-based alloys for Turbine of Helicopter Engine Replacement

Summary
The work presented in this proposal will help the topic leader to evaluate the ability of an innovating TiAl material to replace nickel-based super-alloys for low-pressure turbine application. The PANTHER project will focus on the investigation of the resistance of TiAl alloy under high strain rate, high temperature and different stress triaxiality levels. A combined approach between numerical simulations and original experiments will help creating a reliable transient dynamics material model for behaviour and failure. An upstream methodology will be applied, aiming at testing the material from a microscopic scale to a structure scale. The work will begin by numerical simulation of a blade-off in order to evaluate the important parameters to take into consideration in the model. The results of this preliminary study will drive the experimental conditions for the material testing on Split Hopkinson Bar apparatus. A first couple of parameters will be fitted thanks to this first test campaign. The study will go on with simplified impact testing (two impact configuration) with highly instrumented targets. These tests will reveal the behaviour and failure mode of the TiAl under dynamic conditions. Numerical simulations of these experiments will be performed and material model parameters will be adjusted to correlate simulation results to experimental ones. The goal of the last testing campaign (three impact configurations) is to reproduce the real events that can occur during the life operation of an engine turbine. A last batch of numerical simulation will allow to confirm the ability of the established material model to accurately predict such complex events. The call is in THIOT’s core business and strategy. With the PANTHER project, THIOT is submitting an innovating proposal that will maintain the European industry at the cutting edge of the turbine design.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/820819
Start date: 03-01-2019
End date: 02-05-2023
Total budget - Public funding: 549 512,00 Euro - 549 512,00 Euro
Cordis data

Original description

The work presented in this proposal will help the topic leader to evaluate the ability of an innovating TiAl material to replace nickel-based super-alloys for low-pressure turbine application. The PANTHER project will focus on the investigation of the resistance of TiAl alloy under high strain rate, high temperature and different stress triaxiality levels. A combined approach between numerical simulations and original experiments will help creating a reliable transient dynamics material model for behaviour and failure. An upstream methodology will be applied, aiming at testing the material from a microscopic scale to a structure scale. The work will begin by numerical simulation of a blade-off in order to evaluate the important parameters to take into consideration in the model. The results of this preliminary study will drive the experimental conditions for the material testing on Split Hopkinson Bar apparatus. A first couple of parameters will be fitted thanks to this first test campaign. The study will go on with simplified impact testing (two impact configuration) with highly instrumented targets. These tests will reveal the behaviour and failure mode of the TiAl under dynamic conditions. Numerical simulations of these experiments will be performed and material model parameters will be adjusted to correlate simulation results to experimental ones. The goal of the last testing campaign (three impact configurations) is to reproduce the real events that can occur during the life operation of an engine turbine. A last batch of numerical simulation will allow to confirm the ability of the established material model to accurately predict such complex events. The call is in THIOT’s core business and strategy. With the PANTHER project, THIOT is submitting an innovating proposal that will maintain the European industry at the cutting edge of the turbine design.

Status

CLOSED

Call topic

JTI-CS2-2017-CfP07-ENG-01-29

Update Date

27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.4. SOCIETAL CHALLENGES - Smart, Green And Integrated Transport
H2020-EU.3.4.5. CLEANSKY2
H2020-EU.3.4.5.5. ITD Engines
H2020-CS2-CFP07-2017-02
JTI-CS2-2017-CfP07-ENG-01-29 Characterization of the resistance of TiAl turbine blades to impact