HiTech AlkCarb | New geomodels to explore deeper for High-Technology critical raw materials in Alkaline rocks and Carbonatites

Summary
Five of the 20 raw materials identified by the European Commission as critical are commonly found in association with alkaline rocks and carbonatites (heavy and light rare earth elements, niobium, fluorspar, and phosphate). Other elements increasingly important for ‘hi-tech’ applications, and found in these rocks include hafnium (Hf), tantalum (Ta), scandium (Sc) and zirconium (Zr). In fact, there is a greater chance of a carbonatite complex having resources economic to mine than any other rock type (about 20 active mines in ca. 500 known carbonatite complexes).

Less than 3% of critical raw materials supply is indigenous to the EU. However, deposits are known and exploration is ongoing in parts of northern Europe. In central and southern Europe the presence of abundant alkaline volcanic rocks indicates the likelihood that deposits exist within about a km of the surface.
This project will make a step-change in exploration models for alkaline and carbonatite provinces, using mineralogy, petrology, and geochemistry, and state-of-the-art interpretation of high resolution geophysics and downhole measurement tools, to make robust predictions about mineral prospectivity at depth. This will be achieved through studies at seven key natural laboratories, combined with Expert Council workshops. The results will be incorporated into new geomodels on multiple scales.

In contrast to known deposits, Europe is well endowed with expertise. The project brings together industry partners involved in exploration, geophysics and environmental assessment with two geological surveys, a major museum and five universities. The results will make Europe the world leader in this specialist area. They will give the four SME industry partners world-leading expertise to develop and expand their businesses, transferring their business expertise from Africa to Europe. The project will help give European ‘hi-tech’ industry the confidence to innovate in manufacturing using critical raw materials.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/689909
Start date: 01-02-2016
End date: 31-01-2020
Total budget - Public funding: 5 395 296,00 Euro - 5 395 296,00 Euro
Cordis data

Original description

Five of the 20 raw materials identified by the European Commission as critical are commonly found in association with alkaline rocks and carbonatites (heavy and light rare earth elements, niobium, fluorspar, and phosphate). Other elements increasingly important for ‘hi-tech’ applications, and found in these rocks include hafnium (Hf), tantalum (Ta), scandium (Sc) and zirconium (Zr). In fact, there is a greater chance of a carbonatite complex having resources economic to mine than any other rock type (about 20 active mines in ca. 500 known carbonatite complexes).

Less than 3% of critical raw materials supply is indigenous to the EU. However, deposits are known and exploration is ongoing in parts of northern Europe. In central and southern Europe the presence of abundant alkaline volcanic rocks indicates the likelihood that deposits exist within about a km of the surface.
This project will make a step-change in exploration models for alkaline and carbonatite provinces, using mineralogy, petrology, and geochemistry, and state-of-the-art interpretation of high resolution geophysics and downhole measurement tools, to make robust predictions about mineral prospectivity at depth. This will be achieved through studies at seven key natural laboratories, combined with Expert Council workshops. The results will be incorporated into new geomodels on multiple scales.

In contrast to known deposits, Europe is well endowed with expertise. The project brings together industry partners involved in exploration, geophysics and environmental assessment with two geological surveys, a major museum and five universities. The results will make Europe the world leader in this specialist area. They will give the four SME industry partners world-leading expertise to develop and expand their businesses, transferring their business expertise from Africa to Europe. The project will help give European ‘hi-tech’ industry the confidence to innovate in manufacturing using critical raw materials.

Status

CLOSED

Call topic

SC5-11d-2015

Update Date

27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.5. SOCIETAL CHALLENGES - Climate action, Environment, Resource Efficiency and Raw Materials
H2020-EU.3.5.3. Ensuring the sustainable supply of non-energy and non-agricultural raw materials
H2020-EU.3.5.3.0. Cross-cutting call topics
H2020-SC5-2015-one-stage
SC5-11d-2015 New sustainable exploration technologies and geomodels