Summary
CRESCENDO will develop highly active and long-term stable electrocatalysts of non-platinum group metal (non-PGM) catalysts for the PEMFC cathode using a range of complementary and convergent approaches, and will re-design the cathode catalyst layer so as to reach the project target power density and durability requirements of 0.42 W/cm2 at 0.7 V, and 1000 h with less than 30% performance loss at 1.5 A/cm2 after 1000 h under the FC-DLC, initially in small and ultimately full-size single cells tested in an industrial environment on an industrially scaled-up catalyst. The proposal includes the goal of developing non-PGM or ultra-low PGM anode catalysts with greater tolerance to impurities than current low Pt-loaded anodes. It will develop and apply advanced diagnostics methods and tests, and characterisation tools for determination of active site density and to better understand performance degradation and mass transport losses. The proposal builds on previous achievements in non-PGM catalyst development within all of the university and research organisation project partners. It benefits from the unrivalled know-how in catalyst layer development at JMFC and the overarching expertise at BMW in cell and stack testing, and in guiding the materials development to align with systems requirements.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/779366 |
Start date: | 01-01-2018 |
End date: | 30-09-2021 |
Total budget - Public funding: | 2 739 602,50 Euro - 2 739 602,00 Euro |
Cordis data
Original description
CRESCENDO will develop highly active and long-term stable electrocatalysts of non-platinum group metal (non-PGM) catalysts for the PEMFC cathode using a range of complementary and convergent approaches, and will re-design the cathode catalyst layer so as to reach the project target power density and durability requirements of 0.42 W/cm2 at 0.7 V, and 1000 h with less than 30% performance loss at 1.5 A/cm2 after 1000 h under the FC-DLC, initially in small and ultimately full-size single cells tested in an industrial environment on an industrially scaled-up catalyst. The proposal includes the goal of developing non-PGM or ultra-low PGM anode catalysts with greater tolerance to impurities than current low Pt-loaded anodes. It will develop and apply advanced diagnostics methods and tests, and characterisation tools for determination of active site density and to better understand performance degradation and mass transport losses. The proposal builds on previous achievements in non-PGM catalyst development within all of the university and research organisation project partners. It benefits from the unrivalled know-how in catalyst layer development at JMFC and the overarching expertise at BMW in cell and stack testing, and in guiding the materials development to align with systems requirements.Status
CLOSEDCall topic
FCH-01-2-2017Update Date
27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
H2020-EU.3.5. SOCIETAL CHALLENGES - Climate action, Environment, Resource Efficiency and Raw Materials
H2020-EU.3.5.7.1. Reduce the use of the EU defined "Critical raw materials", for instance through low platinum or platinum free resources and through recycling or reducing or avoiding the use of rare earth elements