ROBOMINERS | Resilient Bio-inspired Modular Robotic Miners

Summary
ROBOMINERS will develop a bio-inspired, modular and reconfigurable robot-miner for small and difficult to access deposits. The aim is to create a prototype robot that is capable of mining underground, underwater or above water, and can be delivered in modules to the deposit via a large diameter borehole. In the envisioned ROBOMINERS technology line, mining will take place underground, underwater in a flooded environment. A large diameter borehole is drilled from the surface to the mineral deposit. A modular mining machine is delivered in modules via the borehole. This will then self-assemble and begin its operation. Powered by a water hydraulic drivetrain and artificial muscles, the robot will have high power density and environmentally safe operation. Situational awareness and sensing is provided by novel body sensors, including artificial whiskers that will merge data in realtime with production sensors, optimising the rate of production and selection between different production methods. The produced high-grade mineral slurry is pumped to the surface, where it will be processed. The waste slurry could then be returned to the mine where it will backfill mined-out areas. ROBOMINERS will deliver proof of concept (TRL-4) of the feasibility of this technology line that can enable the EU have access to mineral raw materials from otherwise inaccessible or uneconomic domestic sources. This proof of concept will be delivered in the format of a new amphibious robot Miner Prototype that will be designed and constructed as a result of merging technologies from advanced robotics, mechatronics and mining engineering. Laboratory experiments will confirm the Miner’s key functions, such as modularity, configurability, selective mining ability and resilience under a range of operating scenarios. The Prototype Miner will then be used to study and advance future research challenges concerning scalability, swarming behaviour and operation in harsh environments.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/820971
Start date: 01-06-2019
End date: 30-11-2023
Total budget - Public funding: 7 445 900,00 Euro - 7 445 900,00 Euro
Cordis data

Original description

ROBOMINERS will develop a bio-inspired, modular and reconfigurable robot-miner for small and difficult to access deposits. The aim is to create a prototype robot that is capable of mining underground, underwater or above water, and can be delivered in modules to the deposit via a large diameter borehole. In the envisioned ROBOMINERS technology line, mining will take place underground, underwater in a flooded environment. A large diameter borehole is drilled from the surface to the mineral deposit. A modular mining machine is delivered in modules via the borehole. This will then self-assemble and begin its operation. Powered by a water hydraulic drivetrain and artificial muscles, the robot will have high power density and environmentally safe operation. Situational awareness and sensing is provided by novel body sensors, including artificial whiskers that will merge data in realtime with production sensors, optimising the rate of production and selection between different production methods. The produced high-grade mineral slurry is pumped to the surface, where it will be processed. The waste slurry could then be returned to the mine where it will backfill mined-out areas. ROBOMINERS will deliver proof of concept (TRL-4) of the feasibility of this technology line that can enable the EU have access to mineral raw materials from otherwise inaccessible or uneconomic domestic sources. This proof of concept will be delivered in the format of a new amphibious robot Miner Prototype that will be designed and constructed as a result of merging technologies from advanced robotics, mechatronics and mining engineering. Laboratory experiments will confirm the Miner’s key functions, such as modularity, configurability, selective mining ability and resilience under a range of operating scenarios. The Prototype Miner will then be used to study and advance future research challenges concerning scalability, swarming behaviour and operation in harsh environments.

Status

SIGNED

Call topic

SC5-09-2018-2019

Update Date

27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.5. SOCIETAL CHALLENGES - Climate action, Environment, Resource Efficiency and Raw Materials
H2020-EU.3.5.3. Ensuring the sustainable supply of non-energy and non-agricultural raw materials
H2020-EU.3.5.3.0. Cross-cutting call topics
H2020-SC5-2018-2
SC5-09-2018-2019 New solutions for the sustainable production of raw materials
H2020-SC5-2019-2
SC5-09-2018-2019 New solutions for the sustainable production of raw materials