iMETland | iMETland: A new generation of Microbial Electrochemical Wetland for effective decentralized wastewater treatment

Summary
iMETland project aims to construct and validate a full-scale application of a eco-friendly device to treat urban wastewater from small communities at zero-energy operation cost. Our concept comes from the integration of Microbial Electrochemical Technologies (MET) with the biofilters used in constructed wetlands. iMETland outperforms classical biofilters from constructed wetlands by using electroactive bacteria in combination with a innovative electroconductive material to achive depuration rates that are 10-fold higher than classical techniques. On top of that, the low biomass yield generated under electrogenic conditions avoids any bed colmatation. Wastewater will be also converted into pathogen-free water suitable for irrigation by using an electro-oxidative methodology. Furthermore, the unique conversion of sewage treatment into electric current by electricity-producing bacteria makes such a process an internal reporter of the biological depuration process. So thus, it can be used as output signal to control the process and can easily inform the operator through ICT tools, converting the depuration in an interactive process between device and a smart-phone in end-user´s hands.
iMETland try to fill the gap that was sharply identified by the programme topic: WATER-1-2014/2015: Bridging the gap: from innovative water solutions to market replication. Our solution has already passed both research and pilot scale and is ready to try a full-scale demonstration to accelerate the market uptake. The multidisciplinary nature of iMETland makes it to fit well with the “water and wastewater treatment “priority of the EIP-water. Moreover, the coordinator of iMETland consortium is also the Technical Manager of a recent ACTION GROUP at EIP-WATER called “ MEET-ME4WATER, Meeting Microbial Electrochemistry for Water”. This AG focuses on overcoming the barriers to scaling up and demonstrate microbial electrochemical technologies (METs) and bring them faster to the market.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/642190
Start date: 01-09-2015
End date: 31-12-2018
Total budget - Public funding: 3 461 622,50 Euro - 2 924 810,00 Euro
Cordis data

Original description

iMETland project aims to construct and validate a full-scale application of a eco-friendly device to treat urban wastewater from small communities at zero-energy operation cost. Our concept comes from the integration of Microbial Electrochemical Technologies (MET) with the biofilters used in constructed wetlands. iMETland outperforms classical biofilters from constructed wetlands by using electroactive bacteria in combination with a innovative electroconductive material to achive depuration rates that are 10-fold higher than classical techniques. On top of that, the low biomass yield generated under electrogenic conditions avoids any bed colmatation. Wastewater will be also converted into pathogen-free water suitable for irrigation by using an electro-oxidative methodology. Furthermore, the unique conversion of sewage treatment into electric current by electricity-producing bacteria makes such a process an internal reporter of the biological depuration process. So thus, it can be used as output signal to control the process and can easily inform the operator through ICT tools, converting the depuration in an interactive process between device and a smart-phone in end-user´s hands.
iMETland try to fill the gap that was sharply identified by the programme topic: WATER-1-2014/2015: Bridging the gap: from innovative water solutions to market replication. Our solution has already passed both research and pilot scale and is ready to try a full-scale demonstration to accelerate the market uptake. The multidisciplinary nature of iMETland makes it to fit well with the “water and wastewater treatment “priority of the EIP-water. Moreover, the coordinator of iMETland consortium is also the Technical Manager of a recent ACTION GROUP at EIP-WATER called “ MEET-ME4WATER, Meeting Microbial Electrochemistry for Water”. This AG focuses on overcoming the barriers to scaling up and demonstrate microbial electrochemical technologies (METs) and bring them faster to the market.

Status

CLOSED

Call topic

WATER-1a-2014

Update Date

27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.5. SOCIETAL CHALLENGES - Climate action, Environment, Resource Efficiency and Raw Materials
H2020-EU.3.5.4. Enabling the transition towards a green economy and society through eco-innovation
H2020-EU.3.5.4.0. Cross-cutting call topics
H2020-WATER-2014-two-stage
WATER-1a-2014 First application and market replication