Summary
The Southern Ocean regulates the global climate by controlling heat and carbon exchanges between the atmosphere and the ocean. It is responsible for about 60-90% of the excess heat (i.e. associated with anthropogenic climate change) absorbed by the World Oceans each year, and is also recognised to largely control decadal scale variability of Earth carbon budget, with key implications for decision makers and regular global stocktake agreed as part of the Paris agreement. Despite such pivotal climate importance, its representation in global climate model represents one of the main weaknesses of climate simulation and projection because too little is known about the underlying processes. Limitations come both from the lack of observations in this extreme environment and its inherent sensitivity to intermittent small-scale processes that are not captured in current Earth system models. The overall objective of SO-CHIC is to understand and quantify variability of heat and carbon budgets in the Southern Ocean through an investigation of the key processes controlling exchanges between the atmosphere, ocean and sea ice using a combination of observational and modelling approaches. SO-CHIC considers the Atlantic sector of the Southern Ocean as a natural laboratory both because of its worldwide importance in water-mass formation and because of the strong European presence in this sector already established at national levels, which allow to best leverage existing expertise, infrastructure, and observation network, around one single coordinated overall objective. SO-CHIC also takes the opportunity of the recent re-appearance of the Atlantic Sector Weddell Polynya to unveil its dynamics and global impact on heat and carbon cycles. A combination of dedicated observation, existing decades-long time-series, and state-of-the-art modelling will be used to address specific objectives on key processes, as well as their impact and feedback on the large-scale atmosphere-ocean system.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/821001 |
Start date: | 01-11-2019 |
End date: | 31-10-2024 |
Total budget - Public funding: | 7 989 925,00 Euro - 7 989 925,00 Euro |
Cordis data
Original description
The Southern Ocean regulates the global climate by controlling heat and carbon exchanges between the atmosphere and the ocean. It is responsible for about 60-90% of the excess heat (i.e. associated with anthropogenic climate change) absorbed by the World Oceans each year, and is also recognised to largely control decadal scale variability of Earth carbon budget, with key implications for decision makers and regular global stocktake agreed as part of the Paris agreement. Despite such pivotal climate importance, its representation in global climate model represents one of the main weaknesses of climate simulation and projection because too little is known about the underlying processes. Limitations come both from the lack of observations in this extreme environment and its inherent sensitivity to intermittent small-scale processes that are not captured in current Earth system models. The overall objective of SO-CHIC is to understand and quantify variability of heat and carbon budgets in the Southern Ocean through an investigation of the key processes controlling exchanges between the atmosphere, ocean and sea ice using a combination of observational and modelling approaches. SO-CHIC considers the Atlantic sector of the Southern Ocean as a natural laboratory both because of its worldwide importance in water-mass formation and because of the strong European presence in this sector already established at national levels, which allow to best leverage existing expertise, infrastructure, and observation network, around one single coordinated overall objective. SO-CHIC also takes the opportunity of the recent re-appearance of the Atlantic Sector Weddell Polynya to unveil its dynamics and global impact on heat and carbon cycles. A combination of dedicated observation, existing decades-long time-series, and state-of-the-art modelling will be used to address specific objectives on key processes, as well as their impact and feedback on the large-scale atmosphere-ocean system.Status
SIGNEDCall topic
LC-CLA-08-2018Update Date
27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
H2020-EU.3.5. SOCIETAL CHALLENGES - Climate action, Environment, Resource Efficiency and Raw Materials