Summary
The X-MINE project supports better resource characterization and estimation as well as more efficient ore extraction in existing mine operations, making the mining of smaller and complex deposits economically feasible and increasing potential European mineral resources (specifically in the context of critical raw materials) without generating adverse environmental impact.
The project will implement large-scale demonstrators of novel sensing technologies improving the efficiency and sustainability of mining operations based on X-Ray Fluorescence (XRF), X-Ray Transmission (XRT) technologies, 3D vision and their integration with mineral sorting equipment and mine planning software systems.
The project will deploy these technologies in 4 existing mining operations in Sweden, Greece, Bulgaria and Cyprus. The sites have been chosen to illustrate different sizes (from small-scale to large-scale) and different target minerals (zinc-lead-silver-gold, copper-gold, gold) including the presence of associated critical metals such as indium, gallium, germanium, platinum group metals and rare earth elements. The pilots will be evaluated in the context of scientific, technical, socio-economic, lifecycle, health and safety performances.
The sensing technologies developed in the project will improve exploration and extraction efficiency, resulting in less blasting required for mining. The technologies will also enable more efficient and automated mineral-selectivity at extraction stage, improving ore pre-concentration options and resulting in lower use of energy, water, chemicals and men hours (worker exposure) during downstream processing.
The consortium includes 6 industrial suppliers, 4 research/academic organizations, 4 mining companies and 1 mining association. The project has a duration of 51 months and a requested EC contribution of €9.3M.
The project will implement large-scale demonstrators of novel sensing technologies improving the efficiency and sustainability of mining operations based on X-Ray Fluorescence (XRF), X-Ray Transmission (XRT) technologies, 3D vision and their integration with mineral sorting equipment and mine planning software systems.
The project will deploy these technologies in 4 existing mining operations in Sweden, Greece, Bulgaria and Cyprus. The sites have been chosen to illustrate different sizes (from small-scale to large-scale) and different target minerals (zinc-lead-silver-gold, copper-gold, gold) including the presence of associated critical metals such as indium, gallium, germanium, platinum group metals and rare earth elements. The pilots will be evaluated in the context of scientific, technical, socio-economic, lifecycle, health and safety performances.
The sensing technologies developed in the project will improve exploration and extraction efficiency, resulting in less blasting required for mining. The technologies will also enable more efficient and automated mineral-selectivity at extraction stage, improving ore pre-concentration options and resulting in lower use of energy, water, chemicals and men hours (worker exposure) during downstream processing.
The consortium includes 6 industrial suppliers, 4 research/academic organizations, 4 mining companies and 1 mining association. The project has a duration of 51 months and a requested EC contribution of €9.3M.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/730270 |
Start date: | 01-06-2017 |
End date: | 31-08-2021 |
Total budget - Public funding: | 12 064 712,50 Euro - 9 318 197,00 Euro |
Cordis data
Original description
The X-MINE project supports better resource characterization and estimation as well as more efficient ore extraction in existing mine operations, making the mining of smaller and complex deposits economically feasible and increasing potential European mineral resources (specifically in the context of critical raw materials) without generating adverse environmental impact.The project will implement large-scale demonstrators of novel sensing technologies improving the efficiency and sustainability of mining operations based on X-Ray Fluorescence (XRF), X-Ray Transmission (XRT) technologies, 3D vision and their integration with mineral sorting equipment and mine planning software systems.
The project will deploy these technologies in 4 existing mining operations in Sweden, Greece, Bulgaria and Cyprus. The sites have been chosen to illustrate different sizes (from small-scale to large-scale) and different target minerals (zinc-lead-silver-gold, copper-gold, gold) including the presence of associated critical metals such as indium, gallium, germanium, platinum group metals and rare earth elements. The pilots will be evaluated in the context of scientific, technical, socio-economic, lifecycle, health and safety performances.
The sensing technologies developed in the project will improve exploration and extraction efficiency, resulting in less blasting required for mining. The technologies will also enable more efficient and automated mineral-selectivity at extraction stage, improving ore pre-concentration options and resulting in lower use of energy, water, chemicals and men hours (worker exposure) during downstream processing.
The consortium includes 6 industrial suppliers, 4 research/academic organizations, 4 mining companies and 1 mining association. The project has a duration of 51 months and a requested EC contribution of €9.3M.
Status
CLOSEDCall topic
SC5-14-2016-2017Update Date
27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
H2020-EU.3.5. SOCIETAL CHALLENGES - Climate action, Environment, Resource Efficiency and Raw Materials