Summary
The overall aim of Real-Time-Mining is to develop a real-time framework to decrease environmental impact and increase resource efficiency in the European raw material extraction industry. The key concept of the proposed research promotes the change in paradigm from discontinuous intermittent process monitoring to a continuous process and quality management system in highly selective mining operations. Real-Time Mining will develop a real-time process-feedback control loop linking online data acquired during extraction at the mining face rapidly with an sequentially up-datable resource model associated with real-time optimization of long-term planning, short-term sequencing and production control decisions. The project will include research and demonstration activities integrating automated sensor based material characterization, online machine performance measurements, underground navigation and positioning, underground mining system simulation and optimization of planning decisions, state-of-the art updating techniques for resource/reserve models. The impact of the project is expected on the environment through a reduction in CO2-emissions, increased energy efficiency and production of zero waste by maximizing process efficiency and resource utilization. Currently economically marginal deposits or difficult to access deposits will be become industrial viable. This will result in a sustainable increase in the competitiveness of the European raw material extraction through a reduced dependency on raw materials from non-EU sources.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/641989 |
Start date: | 01-04-2015 |
End date: | 31-03-2019 |
Total budget - Public funding: | 6 566 702,50 Euro - 5 629 199,00 Euro |
Cordis data
Original description
The overall aim of Real-Time-Mining is to develop a real-time framework to decrease environmental impact and increase resource efficiency in the European raw material extraction industry. The key concept of the proposed research promotes the change in paradigm from discontinuous intermittent process monitoring to a continuous process and quality management system in highly selective mining operations. Real-Time Mining will develop a real-time process-feedback control loop linking online data acquired during extraction at the mining face rapidly with an sequentially up-datable resource model associated with real-time optimization of long-term planning, short-term sequencing and production control decisions. The project will include research and demonstration activities integrating automated sensor based material characterization, online machine performance measurements, underground navigation and positioning, underground mining system simulation and optimization of planning decisions, state-of-the art updating techniques for resource/reserve models. The impact of the project is expected on the environment through a reduction in CO2-emissions, increased energy efficiency and production of zero waste by maximizing process efficiency and resource utilization. Currently economically marginal deposits or difficult to access deposits will be become industrial viable. This will result in a sustainable increase in the competitiveness of the European raw material extraction through a reduced dependency on raw materials from non-EU sources.Status
CLOSEDCall topic
SC5-11a-2014Update Date
27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
H2020-EU.3.5. SOCIETAL CHALLENGES - Climate action, Environment, Resource Efficiency and Raw Materials