Summary
Upcoming space exploration missions envisage precise and safe landing on planetary bodies as well as navigating orbiters, landers, space drones, and robots. Such missions will be performed at various distances from Earth, reaching from the vicinity of Earth and Moon out to several astronomical units for targets like Mars, asteroids or the icy moons of Jupiter and Saturn. A reliable execution of the operations mentioned above can only be achieved by implementing spacecraft autonomous operation and utilising the target body as a navigation reference. This brings a novel requirement for the incorporation of a higher-than-before grade of knowledge about the target, based on a-priori data and on measurements collected during the mission. Examples are globally geo-referenced features originating from mapping missions or the 3D structure of the landing area measured by the spacecraft in the final phase of a landing. This introduces the need for significantly improved on-board processing capabilities and smart algorithms for a wide range of space exploration missions with differentiated demands. Thus, SENAV aims to enable breakthroughs in technologies and scientific instrumentation for space science and exploration missions including those described in the Global Exploration Roadmap, with strong focus on optical navigation for orbiters, landers, drones, and robots with respect to fully autonomous navigation even for unknown environments. In order to enable these missions, SENAV will start (at TRL2-3) to develop and advance smart algorithms, optimized software solutions and miniaturized HW modules, all to be validated through analogous test in laboratory environment aiming to achieve TRL4+ for all HW and SW technologies. Consequent optimization of the payload data processing system accompanied by use of COTS components, as well as the miniaturization of high-performance hardware for integration into small space platforms, will contribute to the desired technological breakthroughs.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101082476 |
Start date: | 01-12-2022 |
End date: | 30-11-2025 |
Total budget - Public funding: | 1 438 620,75 Euro - 1 438 620,00 Euro |
Cordis data
Original description
Upcoming space exploration missions envisage precise and safe landing on planetary bodies as well as navigating orbiters, landers, space drones, and robots. Such missions will be performed at various distances from Earth, reaching from the vicinity of Earth and Moon out to several astronomical units for targets like Mars, asteroids or the icy moons of Jupiter and Saturn. A reliable execution of the operations mentioned above can only be achieved by implementing spacecraft autonomous operation and utilising the target body as a navigation reference. This brings a novel requirement for the incorporation of a higher-than-before grade of knowledge about the target, based on a-priori data and on measurements collected during the mission. Examples are globally geo-referenced features originating from mapping missions or the 3D structure of the landing area measured by the spacecraft in the final phase of a landing. This introduces the need for significantly improved on-board processing capabilities and smart algorithms for a wide range of space exploration missions with differentiated demands. Thus, SENAV aims to enable breakthroughs in technologies and scientific instrumentation for space science and exploration missions including those described in the Global Exploration Roadmap, with strong focus on optical navigation for orbiters, landers, drones, and robots with respect to fully autonomous navigation even for unknown environments. In order to enable these missions, SENAV will start (at TRL2-3) to develop and advance smart algorithms, optimized software solutions and miniaturized HW modules, all to be validated through analogous test in laboratory environment aiming to achieve TRL4+ for all HW and SW technologies. Consequent optimization of the payload data processing system accompanied by use of COTS components, as well as the miniaturization of high-performance hardware for integration into small space platforms, will contribute to the desired technological breakthroughs.Status
SIGNEDCall topic
HORIZON-CL4-2022-SPACE-01-82Update Date
06-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all