Summary
SAFEST contributes to the European capability to provide independent, reliable and efficient solutions in the global space transportation market.
The project will lead to a demonstrator of a modular Autonomous Flight Termination Unit (AFTU) for micro/small launchers, validated in a representative flight processor (execution) and emulated environment (dynamics), reaching TRL 5-6. This solution will differentiate from other developments tightly linked to a specific launch site, safety regulation and oriented (cost and mass) to institutional launchers. The proposed AFTU segregates the general-purpose sensors and functions (e.g. localisation) from the mission abort rules which are launcher and spaceport dependant, allowing customisation for a given launcher and site. This strategy is deemed a game changer for the reduction of launch service cost, availability, flexibility, enabling a more responsive access to space.
Advanced, low-cost, and modular avionics solutions. SAFEST proposes to mature up to TRL 5-6 an MPSoC-based SW execution platform for modern avionics. Avionics and GNC SW development involve highly demanding tasks calling for powerful computational resources. A SW execution platform is proposed, HW independent, multi-layered, and highly decoupled: SMart Integrated Avionics (MIA). It will bring the following benefits: increased performance (several cores), increased flexibility (modular architecture, easy 3rd-party integration, OS & HW abstraction) and reduced cost (COTS components, new methodologies), fully oriented to reusability and AppStore concept.
Integration of both technologies into a single solution. The integrated set will demonstrate that a modular AFTU design, despite its highly demanding computational load, can be implemented in a modular architecture and SW development environment.
The project will lead to a demonstrator of a modular Autonomous Flight Termination Unit (AFTU) for micro/small launchers, validated in a representative flight processor (execution) and emulated environment (dynamics), reaching TRL 5-6. This solution will differentiate from other developments tightly linked to a specific launch site, safety regulation and oriented (cost and mass) to institutional launchers. The proposed AFTU segregates the general-purpose sensors and functions (e.g. localisation) from the mission abort rules which are launcher and spaceport dependant, allowing customisation for a given launcher and site. This strategy is deemed a game changer for the reduction of launch service cost, availability, flexibility, enabling a more responsive access to space.
Advanced, low-cost, and modular avionics solutions. SAFEST proposes to mature up to TRL 5-6 an MPSoC-based SW execution platform for modern avionics. Avionics and GNC SW development involve highly demanding tasks calling for powerful computational resources. A SW execution platform is proposed, HW independent, multi-layered, and highly decoupled: SMart Integrated Avionics (MIA). It will bring the following benefits: increased performance (several cores), increased flexibility (modular architecture, easy 3rd-party integration, OS & HW abstraction) and reduced cost (COTS components, new methodologies), fully oriented to reusability and AppStore concept.
Integration of both technologies into a single solution. The integrated set will demonstrate that a modular AFTU design, despite its highly demanding computational load, can be implemented in a modular architecture and SW development environment.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101082662 |
Start date: | 01-01-2023 |
End date: | 31-12-2024 |
Total budget - Public funding: | 1 465 167,50 Euro - 1 465 167,00 Euro |
Cordis data
Original description
SAFEST contributes to the European capability to provide independent, reliable and efficient solutions in the global space transportation market.The project will lead to a demonstrator of a modular Autonomous Flight Termination Unit (AFTU) for micro/small launchers, validated in a representative flight processor (execution) and emulated environment (dynamics), reaching TRL 5-6. This solution will differentiate from other developments tightly linked to a specific launch site, safety regulation and oriented (cost and mass) to institutional launchers. The proposed AFTU segregates the general-purpose sensors and functions (e.g. localisation) from the mission abort rules which are launcher and spaceport dependant, allowing customisation for a given launcher and site. This strategy is deemed a game changer for the reduction of launch service cost, availability, flexibility, enabling a more responsive access to space.
Advanced, low-cost, and modular avionics solutions. SAFEST proposes to mature up to TRL 5-6 an MPSoC-based SW execution platform for modern avionics. Avionics and GNC SW development involve highly demanding tasks calling for powerful computational resources. A SW execution platform is proposed, HW independent, multi-layered, and highly decoupled: SMart Integrated Avionics (MIA). It will bring the following benefits: increased performance (several cores), increased flexibility (modular architecture, easy 3rd-party integration, OS & HW abstraction) and reduced cost (COTS components, new methodologies), fully oriented to reusability and AppStore concept.
Integration of both technologies into a single solution. The integrated set will demonstrate that a modular AFTU design, despite its highly demanding computational load, can be implemented in a modular architecture and SW development environment.
Status
SIGNEDCall topic
HORIZON-CL4-2021-SPACE-01-23Update Date
06-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all