HyInHeat | Hydrogen technologies for decarbonization of industrial heating processes

Summary
The main objective of HyInHeat is the integration of hydrogen as fuel for high temperature heating processes in the energy intensive industries. While some of the equipment is already presented as hydrogen-ready, the integration of hydrogen combustion in heating processes still needs adoption and redesign of infrastructure, equipment and the process itself.
HyInHeat realizes the implementation of efficient hydrogen combustion systems to decarbonize heating and melting processes of the aluminium and steel sectors, covering almost their complete process chains. To reach this overarching objective within the project, furnace and equipment like burners or measurement and control technology but also infrastructure is redesigned, modified and implemented in eight demonstrators at technical centres and industrial plants. Besides hydrogen-air heating, oxygen-enriched combustion and hydrogen-oxyfuel heating is implemented to boost energy efficiency and to decrease the future hydrogen fuel demand of the processes. This might result in a total redesign of the heating process itself which will be supported by simulation methods enhancing digitalisation along the value chain.
Since critical production processes are converted, it is a fundamental requirement to maintain product quality and yield. Priority is also given to the refractory lining to prove sustainability. From an environmental perspective, new concepts for NOx emission measurement in hydrogen combustion off-gas are developed. Material flow analysis and life cycle analysis methods will support the comprehensive cross-sectorial evaluation, which allows the determination of the potential for the implementation of hydrogen heating processes in energy intensive industry.
With these activities, HyInHeat contributes to the objectives of decreasing CO2 emission of the processes while increasing energy efficiency in a cost competitive way keeping NOx emission levels and resource efficiency at least at the same level.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101091456
Start date: 01-01-2023
End date: 31-12-2026
Total budget - Public funding: 23 963 663,75 Euro - 17 707 718,00 Euro
Cordis data

Original description

The main objective of HyInHeat is the integration of hydrogen as fuel for high temperature heating processes in the energy intensive industries. While some of the equipment is already presented as hydrogen-ready, the integration of hydrogen combustion in heating processes still needs adoption and redesign of infrastructure, equipment and the process itself.
HyInHeat realizes the implementation of efficient hydrogen combustion systems to decarbonize heating and melting processes of the aluminium and steel sectors, covering almost their complete process chains. To reach this overarching objective within the project, furnace and equipment like burners or measurement and control technology but also infrastructure is redesigned, modified and implemented in eight demonstrators at technical centres and industrial plants. Besides hydrogen-air heating, oxygen-enriched combustion and hydrogen-oxyfuel heating is implemented to boost energy efficiency and to decrease the future hydrogen fuel demand of the processes. This might result in a total redesign of the heating process itself which will be supported by simulation methods enhancing digitalisation along the value chain.
Since critical production processes are converted, it is a fundamental requirement to maintain product quality and yield. Priority is also given to the refractory lining to prove sustainability. From an environmental perspective, new concepts for NOx emission measurement in hydrogen combustion off-gas are developed. Material flow analysis and life cycle analysis methods will support the comprehensive cross-sectorial evaluation, which allows the determination of the potential for the implementation of hydrogen heating processes in energy intensive industry.
With these activities, HyInHeat contributes to the objectives of decreasing CO2 emission of the processes while increasing energy efficiency in a cost competitive way keeping NOx emission levels and resource efficiency at least at the same level.

Status

SIGNED

Call topic

HORIZON-CL4-2022-TWIN-TRANSITION-01-17

Update Date

06-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Processes4Planet Partnership
Processes4Planet Partnership Call 2022
HORIZON-CL4-2022-TWIN-TRANSITION-01-17 Integration of hydrogen for replacing fossil fuels in industrial applications (Processes4Planet Partnership) (IA)
Horizon Europe
HORIZON.2 Global Challenges and European Industrial Competitiveness
HORIZON.2.4 Digital, Industry and Space
HORIZON.2.4.1 Manufacturing Technologies
HORIZON-CL4-2022-TWIN-TRANSITION-01
HORIZON-CL4-2022-TWIN-TRANSITION-01-17 Integration of hydrogen for replacing fossil fuels in industrial applications (Processes4Planet Partnership) (IA)
HORIZON.2.4.9 Low-Carbon and Clean Industries
HORIZON-CL4-2022-TWIN-TRANSITION-01
HORIZON-CL4-2022-TWIN-TRANSITION-01-17 Integration of hydrogen for replacing fossil fuels in industrial applications (Processes4Planet Partnership) (IA)