SustainML | Application Aware, Life-Cycle Oriented Model-Hardware Co-Design Framework for Sustainable, Energy Efficient ML Systems

Summary
AI is increasingly becoming a significant factor in the CO2 footprint of the European economy. To avoid a conflict between sustainability and economic competitiveness and to allow the European economy to leverage AI for its leadership in a climate friendly way, new technologies to reduce the energy requirements of all parts of AI system are needed. A key problem is the fact that tools (e.g. PyTorch) and methods that currently drive the rapid spread and democratization of AI prioritize performance and functionality while paying little attention to the CO2 footprint. As a consequence, we see rapid growth in AI applications, but not much so in AI applications that are optimized for low power and sustainability. To change that we aim to develop an interactive design framework and associated models, methods and tools that will foster energy efficiency throughout the whole life-cycle of ML applications: from the design and exploration phase that includes exploratory iterations of training, testing and optimizing different system versions through the final training of the production systems (which often involves huge amounts of data, computation and epochs) and (where appropriate) continuous online re-training during deployment for the inference process. The framework will optimize the ML solutions based on the application tasks, across levels from hardware to model architecture. AI developers from all experience levels will be able to make use of the framework through its emphasis on human-centric interactive transparent design and functional knowledge cores, instead of the common blackbox and fully automated optimization approaches in AutoML. The framework will be made available on the AI4EU platform and disseminated through close collaboration with initiatives such as the ICT 48 networks. It will also be directly exploited by the industrial partners representing various parts of the relevant value chain: from software framework, through hardware to AI services.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101070408
Start date: 01-10-2022
End date: 30-09-2025
Total budget - Public funding: 3 742 855,00 Euro - 3 742 855,00 Euro
Cordis data

Original description

AI is increasingly becoming a significant factor in the CO2 footprint of the European economy. To avoid a conflict between sustainability and economic competitiveness and to allow the European economy to leverage AI for its leadership in a climate friendly way, new technologies to reduce the energy requirements of all parts of AI system are needed. A key problem is the fact that tools (e.g. PyTorch) and methods that currently drive the rapid spread and democratization of AI prioritize performance and functionality while paying little attention to the CO2 footprint. As a consequence, we see rapid growth in AI applications, but not much so in AI applications that are optimized for low power and sustainability. To change that we aim to develop an interactive design framework and associated models, methods and tools that will foster energy efficiency throughout the whole life-cycle of ML applications: from the design and exploration phase that includes exploratory iterations of training, testing and optimizing different system versions through the final training of the production systems (which often involves huge amounts of data, computation and epochs) and (where appropriate) continuous online re-training during deployment for the inference process. The framework will optimize the ML solutions based on the application tasks, across levels from hardware to model architecture. AI developers from all experience levels will be able to make use of the framework through its emphasis on human-centric interactive transparent design and functional knowledge cores, instead of the common blackbox and fully automated optimization approaches in AutoML. The framework will be made available on the AI4EU platform and disseminated through close collaboration with initiatives such as the ICT 48 networks. It will also be directly exploited by the industrial partners representing various parts of the relevant value chain: from software framework, through hardware to AI services.

Status

SIGNED

Call topic

HORIZON-CL4-2021-HUMAN-01-01

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Artificial Intelligence, Data and Robotics Partnership (ADR)
ADR Partnership Call 2021
HORIZON-CL4-2021-HUMAN-01-01 Verifiable robustness, energy efficiency and transparency for Trustworthy AI: Scientific excellence boosting industrial competitiveness (AI, Data and Robotics Partnership) (RIA)
Horizon Europe
HORIZON.2 Global Challenges and European Industrial Competitiveness
HORIZON.2.4 Digital, Industry and Space
HORIZON.2.4.5 Artificial Intelligence and Robotics
HORIZON-CL4-2021-HUMAN-01
HORIZON-CL4-2021-HUMAN-01-01 Verifiable robustness, energy efficiency and transparency for Trustworthy AI: Scientific excellence boosting industrial competitiveness (AI, Data and Robotics Partnership) (RIA)