Summary
Platinum group metals (PGM) are currently highly demanded due to their unique properties which have made them indispensable in different strategic sectors as renewable energy, electric mobility and digital technologies.
Unfortunately, PGMs are costly and Europe depends on their importation from other continents, which is nowadays a high risk for the development of strategic applications in key industrial sectors. For these reasons PGMs are categorized as critical raw materials (CRM) by the EC. Thus, finding alternatives to them is critical for the EU economy. In this context, NICKEFFECT project has identified an opportunity to replace these materials in key applications as electrolysers electrodes, fuel cells catalysts and magneto-electronic devices. The proposed alternative is based on nickel (Ni), an earth-abundant element with ferromagnetic character. To enhance the catalytic performance of Ni, innovative deposition techniques to obtain coatings, with ordered and pseudo-ordered porosity, will be developed. The higher surface to volume ratio provided by the increased porosity will allow enhancing catalytic performance or converse magnetoelectric effect (CME) in electronic devices.
NICKEFFECT will develop and validate at least 3 new materials, together with the coating methodologies (including process modelling) and decision support tools for materials selection (integrating safe and sustainable by design (SSbD) criteria and materials modelling).
The NICKEFFECT project brings together a strong consortium composed of twelve different partners with complementary profiles and large expertise, covering the special skills, capabilities and certification expected for the project.
Unfortunately, PGMs are costly and Europe depends on their importation from other continents, which is nowadays a high risk for the development of strategic applications in key industrial sectors. For these reasons PGMs are categorized as critical raw materials (CRM) by the EC. Thus, finding alternatives to them is critical for the EU economy. In this context, NICKEFFECT project has identified an opportunity to replace these materials in key applications as electrolysers electrodes, fuel cells catalysts and magneto-electronic devices. The proposed alternative is based on nickel (Ni), an earth-abundant element with ferromagnetic character. To enhance the catalytic performance of Ni, innovative deposition techniques to obtain coatings, with ordered and pseudo-ordered porosity, will be developed. The higher surface to volume ratio provided by the increased porosity will allow enhancing catalytic performance or converse magnetoelectric effect (CME) in electronic devices.
NICKEFFECT will develop and validate at least 3 new materials, together with the coating methodologies (including process modelling) and decision support tools for materials selection (integrating safe and sustainable by design (SSbD) criteria and materials modelling).
The NICKEFFECT project brings together a strong consortium composed of twelve different partners with complementary profiles and large expertise, covering the special skills, capabilities and certification expected for the project.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101058076 |
Start date: | 01-06-2022 |
End date: | 31-05-2026 |
Total budget - Public funding: | 4 431 116,25 Euro - 4 431 115,00 Euro |
View on other portals
Cordis data
Original description
Platinum group metals (PGM) are currently highly demanded due to their unique properties which have made them indispensable in different strategic sectors as renewable energy, electric mobility and digital technologies.Unfortunately, PGMs are costly and Europe depends on their importation from other continents, which is nowadays a high risk for the development of strategic applications in key industrial sectors. For these reasons PGMs are categorized as critical raw materials (CRM) by the EC. Thus, finding alternatives to them is critical for the EU economy. In this context, NICKEFFECT project has identified an opportunity to replace these materials in key applications as electrolysers electrodes, fuel cells catalysts and magneto-electronic devices. The proposed alternative is based on nickel (Ni), an earth-abundant element with ferromagnetic character. To enhance the catalytic performance of Ni, innovative deposition techniques to obtain coatings, with ordered and pseudo-ordered porosity, will be developed. The higher surface to volume ratio provided by the increased porosity will allow enhancing catalytic performance or converse magnetoelectric effect (CME) in electronic devices.
NICKEFFECT will develop and validate at least 3 new materials, together with the coating methodologies (including process modelling) and decision support tools for materials selection (integrating safe and sustainable by design (SSbD) criteria and materials modelling).
The NICKEFFECT project brings together a strong consortium composed of twelve different partners with complementary profiles and large expertise, covering the special skills, capabilities and certification expected for the project.
Status
SIGNEDCall topic
HORIZON-CL4-2021-RESILIENCE-01-12Update Date
09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all