MatEl | PZT and Graphene MATerials innovations for advanced opto-Electronic applications in AR and biosensing

Summary
Europe’s leading position in photonics and electronics can only be secured by adapting to the next generation of optoelectronic devices requirements: high performance, multi-functionality and cost efficiency in miniaturized footprint. These can only be achieved if novel schemes for on-chip integration emerge. Among the established platforms for optoelectronic integrated circuits (OEICs), silicon nitride as a wide-band and low-loss material stands outs. However, Si3N4 itself has no active effect and the heterogeneous integration of active III-V and II-VI semiconductor chips is currently very complicated and costly. MatEl offers a unique solution to this challenge and promises to enable a novel on-chip integration scheme: Laser Digital Processing - Laser Transfer and Laser Soldering - will be employed for the accurate and fast alignment and bonding of any type of chip package (OEIC) on Si3N4. The hybrid platform will be enhanced bythe monolithic integration of advanced materials (graphene and high-quality PZT), which will enable multiple functionalities in miniaturized footprint. MatEl will thus demonstrate two next-gen optoelectronic devices at TRL5:
1) 2D light source for AR displays with integrated RGB lasers and OEIC-based demultiplexers.
2) Bio-photonic sensor for antibodies detection with on-chip VCSEL at 850 nm featuring graphene photodetectors.
Overall, MatEl ’s hybrid platform will combine the wide bandwidth and high confinement provided by Si3N4 with the active functionality of III-V and II-VI lasers, supporting a broad spectrum of next-gen applications, extending far beyond these demo applications. Hence, MatEl will reinforce the existing collaborations within the consortium and introduce new eco-systems, estimated to strengthen the EU photonics and microelectronics industrial capability by generating multi M€ turnovers to the involved SMEs and more than 200 new employment positions by the end of its timeframe.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101091774
Start date: 01-01-2023
End date: 30-06-2026
Total budget - Public funding: 3 243 750,00 Euro - 3 243 750,00 Euro
Cordis data

Original description

Europe’s leading position in photonics and electronics can only be secured by adapting to the next generation of optoelectronic devices requirements: high performance, multi-functionality and cost efficiency in miniaturized footprint. These can only be achieved if novel schemes for on-chip integration emerge. Among the established platforms for optoelectronic integrated circuits (OEICs), silicon nitride as a wide-band and low-loss material stands outs. However, Si3N4 itself has no active effect and the heterogeneous integration of active III-V and II-VI semiconductor chips is currently very complicated and costly. MatEl offers a unique solution to this challenge and promises to enable a novel on-chip integration scheme: Laser Digital Processing - Laser Transfer and Laser Soldering - will be employed for the accurate and fast alignment and bonding of any type of chip package (OEIC) on Si3N4. The hybrid platform will be enhanced bythe monolithic integration of advanced materials (graphene and high-quality PZT), which will enable multiple functionalities in miniaturized footprint. MatEl will thus demonstrate two next-gen optoelectronic devices at TRL5:
1) 2D light source for AR displays with integrated RGB lasers and OEIC-based demultiplexers.
2) Bio-photonic sensor for antibodies detection with on-chip VCSEL at 850 nm featuring graphene photodetectors.
Overall, MatEl ’s hybrid platform will combine the wide bandwidth and high confinement provided by Si3N4 with the active functionality of III-V and II-VI lasers, supporting a broad spectrum of next-gen applications, extending far beyond these demo applications. Hence, MatEl will reinforce the existing collaborations within the consortium and introduce new eco-systems, estimated to strengthen the EU photonics and microelectronics industrial capability by generating multi M€ turnovers to the involved SMEs and more than 200 new employment positions by the end of its timeframe.

Status

SIGNED

Call topic

HORIZON-CL4-2022-RESILIENCE-01-10

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.2 Global Challenges and European Industrial Competitiveness
HORIZON.2.4 Digital, Industry and Space
HORIZON.2.4.4 Advanced Materials
HORIZON-CL4-2022-RESILIENCE-01
HORIZON-CL4-2022-RESILIENCE-01-10 Innovative materials for advanced (nano)electronic components and systems (RIA)