HACID | Hybrid Human Artificial Collective Intelligence in Open-Ended Decision Making

Summary
HACID develops a novel hybrid collective intelligence for decision support to professionals facing complex open-ended problems, promoting engagement, fairness and trust. A decision support system (HACID-DSS) is proposed that is based on structured domain knowledge, semi-automatically assembled in a domain knowledge graph (DKG) from available data sources, such as scientific and gray literature. Given a specific case within the addressed domain, a pool of experts is consulted to (i) extract supporting evidence and enrich it, generating a case knowledge graph (CKG) as a subset of the DKG, and (ii) provide one or more solutions to the problem. Exploiting the CKG, the HACID-DSS gathers the expert advice in a collective solution that aggregates the individual opinions and expands them with machine-generated suggestions. In this way, HACID harnesses the wisdom of the crowd in open-ended problems, relying on a traceable process based on supporting evidence for better explainability. A set of evaluation methods is proposed to deal with domains where ground truth is not available, demonstrating the suitability of the proposed approach in a wide range of application domains. Demonstrations are provided in two compelling case studies contributing to the UN Sustainable Development Goals: crowd-sourcing medical diagnostics and climate services for urban adaptation.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101070588
Start date: 01-09-2022
End date: 31-08-2025
Total budget - Public funding: 2 164 500,00 Euro - 1 877 250,00 Euro
Cordis data

Original description

HACID develops a novel hybrid collective intelligence for decision support to professionals facing complex open-ended problems, promoting engagement, fairness and trust. A decision support system (HACID-DSS) is proposed that is based on structured domain knowledge, semi-automatically assembled in a domain knowledge graph (DKG) from available data sources, such as scientific and gray literature. Given a specific case within the addressed domain, a pool of experts is consulted to (i) extract supporting evidence and enrich it, generating a case knowledge graph (CKG) as a subset of the DKG, and (ii) provide one or more solutions to the problem. Exploiting the CKG, the HACID-DSS gathers the expert advice in a collective solution that aggregates the individual opinions and expands them with machine-generated suggestions. In this way, HACID harnesses the wisdom of the crowd in open-ended problems, relying on a traceable process based on supporting evidence for better explainability. A set of evaluation methods is proposed to deal with domains where ground truth is not available, demonstrating the suitability of the proposed approach in a wide range of application domains. Demonstrations are provided in two compelling case studies contributing to the UN Sustainable Development Goals: crowd-sourcing medical diagnostics and climate services for urban adaptation.

Status

SIGNED

Call topic

HORIZON-CL4-2021-DIGITAL-EMERGING-01-10

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Artificial Intelligence, Data and Robotics Partnership (ADR)
ADR Partnership Call 2021
HORIZON-CL4-2021-DIGITAL-EMERGING-01-10 AI, Data and Robotics at work (AI, Data and Robotics Partnership) (IA)
Horizon Europe
HORIZON.2 Global Challenges and European Industrial Competitiveness
HORIZON.2.4 Digital, Industry and Space
HORIZON.2.4.5 Artificial Intelligence and Robotics
HORIZON-CL4-2021-DIGITAL-EMERGING-01
HORIZON-CL4-2021-DIGITAL-EMERGING-01-10 AI, Data and Robotics at work (AI, Data and Robotics Partnership) (IA)