SWAN-on-chip | Low power spintronics wireless autonomous node (SWAN) integrated circuits developed via spintronics technology accelerator platform

Summary
One of the central keystones of the digital transformation of society is the Internet of Things (IoT) paradigm, however recent focus has turned to the energy consumption of the billions of IoT sensor nodes. In order for the realisation of a ‘Green IoT’, low-power sensor nodes are essential, to extend node lifetime, reduce carbon footprint and reduce costs. Spintronics is an emerging technology which has been demonstrated for several key functionalities associated with wireless sensor networks, including sensing, energy harvesting, communication, memories and novel processing paradigms.

In SWAN-on-chip a spintronics wireless autonomous node (SWAN) is proposed for low-power edge computing. Three homogeneously CMOS integrated spin-chip modules will be developed and benchmarked in the context of low power IoT nodes (namely magnetic field sensor, wireless power transfer, wake-up receiver) (Objective 1), and these spin-chip modules will be brought together into a SWAN prototype functional demonstrator capable of real world data capture and used for specific end user test cases (i.e. electric vehicles and smart metering) (Objective 2).

As well as developing individual spin-chips, a system-on-chip style SWAN-on-chip concept will be validated, with different spintronic functionalities being interconnected via CMOS, either by using multi-functional spintronic stacks or masking techniques to allow multiple spintronics technologies to be processed on a single CMOS wafer (Objective 3).

In addition, the SWAN-on-chip concept will be used to validate the ‘spintronics technology accelerator’ platform, where the spintronics equivalent circuit models (Spin-EC) and spintronics multi-project wafer (Spin-MPW) will create a European-level pathway for the fabrication of monolithically integrated Spintronic/CMOS technologies required for boosting devices up the spintronics value chain (Objective 3).
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101070287
Start date: 01-10-2022
End date: 30-09-2025
Total budget - Public funding: 3 180 372,50 Euro - 3 180 372,00 Euro
Cordis data

Original description

One of the central keystones of the digital transformation of society is the Internet of Things (IoT) paradigm, however recent focus has turned to the energy consumption of the billions of IoT sensor nodes. In order for the realisation of a ‘Green IoT’, low-power sensor nodes are essential, to extend node lifetime, reduce carbon footprint and reduce costs. Spintronics is an emerging technology which has been demonstrated for several key functionalities associated with wireless sensor networks, including sensing, energy harvesting, communication, memories and novel processing paradigms.

In SWAN-on-chip a spintronics wireless autonomous node (SWAN) is proposed for low-power edge computing. Three homogeneously CMOS integrated spin-chip modules will be developed and benchmarked in the context of low power IoT nodes (namely magnetic field sensor, wireless power transfer, wake-up receiver) (Objective 1), and these spin-chip modules will be brought together into a SWAN prototype functional demonstrator capable of real world data capture and used for specific end user test cases (i.e. electric vehicles and smart metering) (Objective 2).

As well as developing individual spin-chips, a system-on-chip style SWAN-on-chip concept will be validated, with different spintronic functionalities being interconnected via CMOS, either by using multi-functional spintronic stacks or masking techniques to allow multiple spintronics technologies to be processed on a single CMOS wafer (Objective 3).

In addition, the SWAN-on-chip concept will be used to validate the ‘spintronics technology accelerator’ platform, where the spintronics equivalent circuit models (Spin-EC) and spintronics multi-project wafer (Spin-MPW) will create a European-level pathway for the fabrication of monolithically integrated Spintronic/CMOS technologies required for boosting devices up the spintronics value chain (Objective 3).

Status

SIGNED

Call topic

HORIZON-CL4-2021-DIGITAL-EMERGING-01-14

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.2 Global Challenges and European Industrial Competitiveness
HORIZON.2.4 Digital, Industry and Space
HORIZON.2.4.3 Emerging enabling technologies
HORIZON-CL4-2021-DIGITAL-EMERGING-01
HORIZON-CL4-2021-DIGITAL-EMERGING-01-14 Advanced spintronics: Unleashing spin in the next generation ICs (RIA)