CoreSense | CoreSense: A Hybrid Cognitive Architecture for Deep Understanding

Summary
Cognitive robots are augmenting their autonomy, enabling them to deployments in increasingly open-ended environments. This offers enormous possibilities for improvements in human economy and wellbeing. However, it also poses strong risks that are difficult to assess and control by humans. The trend towards increased autonomy conveys augmented problems concerning reliability, resilience, and trust for autonomous robots in open worlds. The essence of the problem can be traced to robots suffering from a lack of understanding of what is going on and a lack of awareness of their role in it. This is a problem that artificial intelligence approaches based on machine learning are not addressing well. Autonomous robots do not fully understand their open environments, their complex missions, their intricate realizations, and the unexpected events that affect their performance. An improvement in the capability to understand of autonomous robots is needed. This project tries to provide a solution to this need in the form of 1) a theory of understanding, 2) a theory of awareness, 3) reusable software assets to apply these theories in real robots, and 4) three demonstrations of its capability to a) augment resilience of drone teams, b) augment flexibility of manufacturing robots, and c) augment human alignment of social robots. In summary, we will develop a cognitive architecture for autonomous robots based on a formal concept of understanding, supporting value-oriented situation understanding and self-awareness to improve robot flexibility, resilience and explainability.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101070254
Start date: 01-10-2022
End date: 30-09-2026
Total budget - Public funding: 4 915 856,88 Euro - 4 915 856,00 Euro
Cordis data

Original description

Cognitive robots are augmenting their autonomy, enabling them to deployments in increasingly open-ended environments. This offers enormous possibilities for improvements in human economy and wellbeing. However, it also poses strong risks that are difficult to assess and control by humans. The trend towards increased autonomy conveys augmented problems concerning reliability, resilience, and trust for autonomous robots in open worlds. The essence of the problem can be traced to robots suffering from a lack of understanding of what is going on and a lack of awareness of their role in it. This is a problem that artificial intelligence approaches based on machine learning are not addressing well. Autonomous robots do not fully understand their open environments, their complex missions, their intricate realizations, and the unexpected events that affect their performance. An improvement in the capability to understand of autonomous robots is needed. This project tries to provide a solution to this need in the form of 1) a theory of understanding, 2) a theory of awareness, 3) reusable software assets to apply these theories in real robots, and 4) three demonstrations of its capability to a) augment resilience of drone teams, b) augment flexibility of manufacturing robots, and c) augment human alignment of social robots. In summary, we will develop a cognitive architecture for autonomous robots based on a formal concept of understanding, supporting value-oriented situation understanding and self-awareness to improve robot flexibility, resilience and explainability.

Status

SIGNED

Call topic

HORIZON-CL4-2021-DIGITAL-EMERGING-01-11

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Artificial Intelligence, Data and Robotics Partnership (ADR)
ADR Partnership Call 2021
HORIZON-CL4-2021-DIGITAL-EMERGING-01-11 Pushing the limit of robotics cognition (AI, Data and Robotics Partnership) (RIA)
Horizon Europe
HORIZON.2 Global Challenges and European Industrial Competitiveness
HORIZON.2.4 Digital, Industry and Space
HORIZON.2.4.5 Artificial Intelligence and Robotics
HORIZON-CL4-2021-DIGITAL-EMERGING-01
HORIZON-CL4-2021-DIGITAL-EMERGING-01-11 Pushing the limit of robotics cognition (AI, Data and Robotics Partnership) (RIA)