Summary
Wear and corrosion protection play a crucial role in the effort of European Manufacturing Industries to maximise both efficiency and productivity because they are inherently related to the lifetime of the components and their manufacturing cost. Thermal Spray technologies for the deposition of Hardmetals were developed for this reason, i.e., specifically to provide higher resistance to sliding and abrasive wear, coupled with good corrosion resistance. In this field innovation is based on experimental trial-and-error and operational feedback, because the equations that can model the coating performance have to consider the mechanical properties of the hard phase and those of the metal binder, their microstructure and interaction, and their evolution during the non-equilibrium Thermal Spray process. The final coating properties depend on all these factors and more, and they are too many for a physical modelling workflow to provide reliable results on a time scale that is compliant with industrial responses to fluctuating markets, supply chains and regulations. On the other hand, tools based on experimental data that rely only on final coating macro properties require extensive datasets to be reliable. This again conflicts with the response time required by industrial innovation. Moreover, innovation in coating technology is not just a matter of performance and costs: industrial companies have to consider multiple other factors such as the impact on workers, hidden regulatory costs, environmental protection costs, and also general public opinion. CoBRAIN offers a solution to this need, exploiting the integration of computational and experimental data through semantic interoperability, and developing an intelligent tool that will be able to propose novel materials from the class of High Entropy Hardmetals for direct deposition by HVOF, HVAF and CGS Thermal Spray, and capable to estimate their impact on the economy and the environment.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101092211 |
Start date: | 01-01-2023 |
End date: | 31-12-2026 |
Total budget - Public funding: | 5 149 553,25 Euro - 5 149 552,00 Euro |
Cordis data
Original description
Wear and corrosion protection play a crucial role in the effort of European Manufacturing Industries to maximise both efficiency and productivity because they are inherently related to the lifetime of the components and their manufacturing cost. Thermal Spray technologies for the deposition of Hardmetals were developed for this reason, i.e., specifically to provide higher resistance to sliding and abrasive wear, coupled with good corrosion resistance. In this field innovation is based on experimental trial-and-error and operational feedback, because the equations that can model the coating performance have to consider the mechanical properties of the hard phase and those of the metal binder, their microstructure and interaction, and their evolution during the non-equilibrium Thermal Spray process. The final coating properties depend on all these factors and more, and they are too many for a physical modelling workflow to provide reliable results on a time scale that is compliant with industrial responses to fluctuating markets, supply chains and regulations. On the other hand, tools based on experimental data that rely only on final coating macro properties require extensive datasets to be reliable. This again conflicts with the response time required by industrial innovation. Moreover, innovation in coating technology is not just a matter of performance and costs: industrial companies have to consider multiple other factors such as the impact on workers, hidden regulatory costs, environmental protection costs, and also general public opinion. CoBRAIN offers a solution to this need, exploiting the integration of computational and experimental data through semantic interoperability, and developing an intelligent tool that will be able to propose novel materials from the class of High Entropy Hardmetals for direct deposition by HVOF, HVAF and CGS Thermal Spray, and capable to estimate their impact on the economy and the environment.Status
SIGNEDCall topic
HORIZON-CL4-2022-RESILIENCE-01-19Update Date
09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all