MetaFacturing | Data and METAdata for advanced digitalization of manuFACTURING industrial lines

Summary

MetaFacturing focuses on a digitized toolchain for metal part production which will lead to a more resilient production process with respect to the raw materials used (e.g., recycled materials), reduces operator effort and cost, and reduces scrap due to out-of-specification parts. The vision is to create a widely-applicable Digital Twin based process setup and control framework, fulfilling the requirements of industrial scale parts manufacturers (with a specific focus on metal parts) whose central hurdle is the effective use of available part and process data to improve the time-to-market and product quality. This framework will strongly leverage on a range of state-of-the-art technologies in the field of model-based data fusion, efficient process simulation, and data standardisation, and continuous Life Cycle Assessment in order to efficiently develop solutions which are tailored for deployment in industry. MetaFacturing project brings together 6 market leaders (FRONIUS, NEMAK, FILL, VITRONIC, BENTELER and LTH) which will closely cooperate in order to reach a new level of leadership in sustainable manufacturing while maintaining their respective market dominance. The envisaged approach will exploit all available data in the process, starting from material data, in-process measurements, end-of-line quality control and sampling-based product validation. The Digital Twin based approach will enable the holistic consideration of this data in order to provide automatic feedback for the process control, as well as providing novel (meta-)data on the materials used which will be valuable to train the engineers working with these materials.

Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101091635
https://metafacturing.eu/
Start date: 01-01-2023
End date: 31-12-2025
Total budget - Public funding: 5 768 142,00 Euro - 4 997 759,00 Euro
View on other portals
Cordis data

Original description

MetaFacturing focuses on a digitized toolchain for metal part production which will lead to a more resilient production process with respect to the raw materials used (e.g., recycled materials), reduces operator effort and cost, and reduces scrap due to out-of-specification parts. The vision is to create a widely-applicable Digital Twin based process setup and control framework, fulfilling the requirements of industrial scale parts manufacturers (with a specific focus on metal parts) whose central hurdle is the effective use of available part and process data to improve the time-to-market and product quality. This framework will strongly leverage on a range of state-of-the-art technologies in the field of model-based data fusion, efficient process simulation, and data standardisation, and continuous Life Cycle Assessment in order to efficiently develop solutions which are tailored for deployment in industry. MetaFacturing project brings together 6 market leaders (FRONIUS, NEMAK, FILL, VITRONIC, BENTELER and LTH) which will closely cooperate in order to reach a new level of leadership in sustainable manufacturing while maintaining their respective market dominance. The envisaged approach will exploit all available data in the process, starting from material data, in-process measurements, end-of-line quality control and sampling-based product validation. The Digital Twin based approach will enable the holistic consideration of this data in order to provide automatic feedback for the process control, as well as providing novel (meta-)data on the materials used which will be valuable to train the engineers working with these materials.

Status

SIGNED

Call topic

HORIZON-CL4-2022-RESILIENCE-01-25

Update Date

09-02-2023
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.2 Global Challenges and European Industrial Competitiveness
HORIZON.2.4 Digital, Industry and Space
HORIZON.2.4.4 Advanced Materials
HORIZON-CL4-2022-RESILIENCE-01
HORIZON-CL4-2022-RESILIENCE-01-25 Optimised Industrial Systems and Lines through digitalisation (IA)