EReTech | Electrified Reactor Technology

Summary
EReTech proposes to develop and validate at TRL 6 a transformative electrically heated reactor, together with the tailored catalyst for steam methane reforming, using a 250 kW unit. Based on SYPOX technology the reactor hosts ceramic supported structured catalyst, electrically heated by internal direct contact resistive heating elements. This allows achieving an energy efficiency close to 95%, i.e., nearly twice the value typical for gas-fired heat boxes, and a reactor volume that is two orders-of-magnitude smaller. As designed, the 250 kW reactor integrated with all required peripherals in a reforming skid will be used to produce approximately 400 kg/day of 99.999% pure H2. This is equivalent to the size of a commercially relevant biogas reforming plant for the decentralized production of renewable H2. The targeted design will allow to increase the power via parallelization, while scale-up will be conceptually targeted for larger capacities (>20 MW electrical input). EReTech?s final goal is to offer solutions for the decentralized market and for the decarbonization of existing or new centralized reforming plants.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101058608
Start date: 01-06-2022
End date: 30-11-2025
Total budget - Public funding: 9 233 597,71 Euro - 7 352 357,00 Euro
Cordis data

Original description

EReTech proposes to develop and validate at TRL 6 a transformative electrically heated reactor, together with the tailored catalyst for steam methane reforming, using a 250 kW unit. Based on SYPOX technology the reactor hosts ceramic supported structured catalyst, electrically heated by internal direct contact resistive heating elements. This allows achieving an energy efficiency close to 95%, i.e., nearly twice the value typical for gas-fired heat boxes, and a reactor volume that is two orders-of-magnitude smaller. As designed, the 250 kW reactor integrated with all required peripherals in a reforming skid will be used to produce approximately 400 kg/day of 99.999% pure H2. This is equivalent to the size of a commercially relevant biogas reforming plant for the decentralized production of renewable H2. The targeted design will allow to increase the power via parallelization, while scale-up will be conceptually targeted for larger capacities (>20 MW electrical input). EReTech?s final goal is to offer solutions for the decentralized market and for the decarbonization of existing or new centralized reforming plants.

Status

SIGNED

Call topic

HORIZON-CL4-2021-RESILIENCE-01-14

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.2 Global Challenges and European Industrial Competitiveness
HORIZON.2.4 Digital, Industry and Space
HORIZON.2.4.4 Advanced Materials
HORIZON-CL4-2021-RESILIENCE-01
HORIZON-CL4-2021-RESILIENCE-01-14 Development of more energy efficient electrically heated catalytic reactors (IA)