FLEXCRASH | Flexible and hybrid manufacturing of green aluminium to produce tailored adaptive crash-tolerant structures

Summary
Flexcrash aims to develop a flexible and hybrid manufacturing technology based on applying surface patterns by additive manufacturing onto preformed parts. Aluminium alloys have been selected as the optimum material to build high performance structures, addressing both lightweight and environmental sustainability. They provide better recyclability, affordability (low CRM content), and costs than other material alternatives that would need complex developments for joining, recycling, and manufacturing. The property tailoring capacity offered by hybrid manufacturing will permit to develop a new type of crash-tolerant structures with outstanding performance under a wide range of impact angles and unexpected crash conditions. Structures will be defined according to the collision parameters identified by the different mixed traffic scenarios. Such tailored structures are the ideal solutions for dynamic active safety devices that allows displacement of crash structures to optimally face an imminent crash. Considering that the frontal crash is the most common (70%), a front-end structure has been chosen as demonstrator to validate the manufacturing developments, the modelling approach and the testing methodologies. The flexibility of the proposed technology will facilitate its transferability to other safety-related structures in vehicle’s locations with higher risk for passenger’s injuries while decreasing the number of materials and processes used to manufacture a crash structure. Simplify supply chain will turn into 20% manufacturing costs saving and reduce the risk of disruption.
Virtual testing with improved reliability, validated by crash tests, will be used to propose new testing configurations, looking at the next step towards standardization. The application of Flexcrash solutions to the whole BiW offers a lightweighting potential up to 20% with improved safety (toward 50% reduction of passenger’s injuries and fatalities).
Results, demos, etc. Show all and search (5)
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101069674
Start date: 01-09-2022
End date: 31-08-2026
Total budget - Public funding: 3 971 744,25 Euro - 3 971 744,00 Euro
Cordis data

Original description

Flexcrash aims to develop a flexible and hybrid manufacturing technology based on applying surface patterns by additive manufacturing onto preformed parts. Aluminium alloys have been selected as the optimum material to build high performance structures, addressing both lightweight and environmental sustainability. They provide better recyclability, affordability (low CRM content), and costs than other material alternatives that would need complex developments for joining, recycling, and manufacturing. The property tailoring capacity offered by hybrid manufacturing will permit to develop a new type of crash-tolerant structures with outstanding performance under a wide range of impact angles and unexpected crash conditions. Structures will be defined according to the collision parameters identified by the different mixed traffic scenarios. Such tailored structures are the ideal solutions for dynamic active safety devices that allows displacement of crash structures to optimally face an imminent crash. Considering that the frontal crash is the most common (70%), a front-end structure has been chosen as demonstrator to validate the manufacturing developments, the modelling approach and the testing methodologies. The flexibility of the proposed technology will facilitate its transferability to other safety-related structures in vehicle’s locations with higher risk for passenger’s injuries while decreasing the number of materials and processes used to manufacture a crash structure. Simplify supply chain will turn into 20% manufacturing costs saving and reduce the risk of disruption.
Virtual testing with improved reliability, validated by crash tests, will be used to propose new testing configurations, looking at the next step towards standardization. The application of Flexcrash solutions to the whole BiW offers a lightweighting potential up to 20% with improved safety (toward 50% reduction of passenger’s injuries and fatalities).

Status

SIGNED

Call topic

HORIZON-CL5-2021-D6-01-10

Update Date

09-02-2023
Images
No images available.
Geographical location(s)