EM-TECH | Innovative e-motor technologies covering e-axles and e-corners vehicle architectures for high-efficient and sustainable e-mobility

Summary
EM-TECH brings together 10 participants from industry and academia to develop novel solutions to push the boundaries of electric machine technology for automotive traction, through: i) innovative direct and active cooling designs; ii) virtual sensing functionalities for the high-fidelity real-time estimation of the operating condition of the machine; iii) enhanced machine control, bringing reduced design and operating conservativeness enabled by ii); iv) electric gearing to provide enhanced operational flexibility and energy efficiency; v) digital twin based optimisation, embedding systematic consideration of Life Cycle Analysis and Life Cycle Costing aspects since the early design stages; and vi) adoption of recycled permanent magnets and circularity solutions.

The proposed innovations will be implemented in new series of radial flux direct drive in-wheel motors characterised by so far unexplored levels of torque density (>150 Nm/litre, >50 Nm/kg), and on-board single stator double rotor type ironless axial flux machines providing power density and specific power levels in excess of 30 kW/litre and 10 kW/kg. The solutions will address both passenger car and van applications (continuous power levels of 50 kW - 120 kW), providing competitive costs (25%), and to >60% decrease of the rare earth content, including implementation of magnet recycling solutions.

EM-TECH obtained the support of several car makers (AUDI and Changan UK), which will strengthen the exploitation strategy. EM-TECH will further directly contribute to the relevant European Destination and KSO C and A, by supporting the establishment of a European leadership in the sector of key digital, enabling and emerging technologies, and the development of the respective value chains.
Results, demos, etc. Show all and search (3)
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101096083
Start date: 01-01-2023
End date: 31-12-2025
Total budget - Public funding: 3 834 550,00 Euro - 3 834 550,00 Euro
Cordis data

Original description

EM-TECH brings together 10 participants from industry and academia to develop novel solutions to push the boundaries of electric machine technology for automotive traction, through: i) innovative direct and active cooling designs; ii) virtual sensing functionalities for the high-fidelity real-time estimation of the operating condition of the machine; iii) enhanced machine control, bringing reduced design and operating conservativeness enabled by ii); iv) electric gearing to provide enhanced operational flexibility and energy efficiency; v) digital twin based optimisation, embedding systematic consideration of Life Cycle Analysis and Life Cycle Costing aspects since the early design stages; and vi) adoption of recycled permanent magnets and circularity solutions.

The proposed innovations will be implemented in new series of radial flux direct drive in-wheel motors characterised by so far unexplored levels of torque density (>150 Nm/litre, >50 Nm/kg), and on-board single stator double rotor type ironless axial flux machines providing power density and specific power levels in excess of 30 kW/litre and 10 kW/kg. The solutions will address both passenger car and van applications (continuous power levels of 50 kW - 120 kW), providing competitive costs (25%), and to >60% decrease of the rare earth content, including implementation of magnet recycling solutions.

EM-TECH obtained the support of several car makers (AUDI and Changan UK), which will strengthen the exploitation strategy. EM-TECH will further directly contribute to the relevant European Destination and KSO C and A, by supporting the establishment of a European leadership in the sector of key digital, enabling and emerging technologies, and the development of the respective value chains.

Status

SIGNED

Call topic

HORIZON-CL5-2022-D5-01-09

Update Date

09-02-2023
Images
No images available.
Geographical location(s)