Summary
For a larger deployment of clean and sustainable energies more efficient and competitive converter solutions are necessary. In this framework, wide Bandgap (WBG) technology provides benefits compared to conventional silicon technology. Even those benefits are well known, e.g. efficiency and/or sufficient reduction on converter footprint, right now SiC are far too expensive and its cost has a negative impact on overall system cost.
In the view of this situation, the objective of AdvanSiC is to produce, test and validate cost-effective HV SiC MOSFET semiconductors in various MVDC grid applications: a solid-state circuit breaker for DC converter stations, a full-scale wind converter and a full-scale solar inverter.
The aim is to minimize HV SiC device cost by advanced design structures and process optimizations. And afterwards, assure an immune and reliable environment to handle SiC fast transients, as well as optimize passives and cooling system to provide cost reduction not only at device level but also at system level.
The main goal of AdvanSiC is to provide industrial leadership in key and emerging technologies to SMEs, start-ups, and industry from Europe to Europe, specifically in a technology that will be key to provide clean and affordable energy.
In the view of this situation, the objective of AdvanSiC is to produce, test and validate cost-effective HV SiC MOSFET semiconductors in various MVDC grid applications: a solid-state circuit breaker for DC converter stations, a full-scale wind converter and a full-scale solar inverter.
The aim is to minimize HV SiC device cost by advanced design structures and process optimizations. And afterwards, assure an immune and reliable environment to handle SiC fast transients, as well as optimize passives and cooling system to provide cost reduction not only at device level but also at system level.
The main goal of AdvanSiC is to provide industrial leadership in key and emerging technologies to SMEs, start-ups, and industry from Europe to Europe, specifically in a technology that will be key to provide clean and affordable energy.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101075709 |
Start date: | 01-01-2023 |
End date: | 31-12-2025 |
Total budget - Public funding: | 4 001 415,00 Euro - 3 242 373,00 Euro |
Cordis data
Original description
For a larger deployment of clean and sustainable energies more efficient and competitive converter solutions are necessary. In this framework, wide Bandgap (WBG) technology provides benefits compared to conventional silicon technology. Even those benefits are well known, e.g. efficiency and/or sufficient reduction on converter footprint, right now SiC are far too expensive and its cost has a negative impact on overall system cost.In the view of this situation, the objective of AdvanSiC is to produce, test and validate cost-effective HV SiC MOSFET semiconductors in various MVDC grid applications: a solid-state circuit breaker for DC converter stations, a full-scale wind converter and a full-scale solar inverter.
The aim is to minimize HV SiC device cost by advanced design structures and process optimizations. And afterwards, assure an immune and reliable environment to handle SiC fast transients, as well as optimize passives and cooling system to provide cost reduction not only at device level but also at system level.
The main goal of AdvanSiC is to provide industrial leadership in key and emerging technologies to SMEs, start-ups, and industry from Europe to Europe, specifically in a technology that will be key to provide clean and affordable energy.
Status
SIGNEDCall topic
HORIZON-CL5-2021-D3-02-10Update Date
09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all