HOPE | Hydrogen Optimized multi-fuel Propulsion system for clean and silEnt aircraft

Summary
The ICAO Post-COVID forecasts estimate a 2.4%-4.1% increase for a low to high revenue passenger-kilometres growth rate. Air traffic growth inevitably increases aviation's combustion and acoustic emissions, hence aggravating aviation's environmental impact locally and globally.
HOPE will deliver an integrated aircraft propulsion system comprising two multi-fuel ultra-high bypass ratio (UHBR) turbofan engines, a fuel cell based auxiliary propulsion and power unit (FC-APPU) driving an aft boundary layer ingestion (BLI) propulsor based on tube-wing aircraft configuration. The HOPE system: 1)minimises the combustion and noise emissions during landing and takeoff (LTO), hence the impact on air quality and noise annoyance near airports, without the trade-off of cruise emissions; 2)retrofits the existing aircraft configuration, allowing the substantial emission reduction to be achieved within a short time; 3)de-risks the use of hydrogen solely in existing tube-wing aircraft configurations; 4)smoothens aviation’s energy transition through assessment and exploitation of several greener propulsion technologies at different maturity level.
HOPE emission goals consist of LTO NOx: -50%, CO: -50%, soot: -80%, perceived noise: -20% (~3 dB per operation), and climate impact: -30%, compared to state-of-the-art technology in 2020 (A320neo). To this end, HOPE will: 1)Design an integrated aircraft propulsion system accommodating multi-fuel (kerosene/sustainable aviation fuel +hydrogen) UHBR turbofan engines, FC-APPU, and an aft BLI propulsor; 2)Explore the novel idea of combining a BLI propulsor with FC-APPU for zero-emission taxiing; 3)Model, experiment, and demonstrate for the first time a low emission multi-fuel combustion technology burning H2+kerosene/SAF for future UHBR turbofan engine; 4)Assess societal impact, environmental burden, and cost benefits of the reduced noise and emissions by HOPE technology; 5)Formulate policy and recommendations to introduce HOPE technology.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101096275
Start date: 01-02-2023
End date: 31-01-2027
Total budget - Public funding: 3 394 197,50 Euro - 3 394 197,00 Euro
Cordis data

Original description

The ICAO Post-COVID forecasts estimate a 2.4%-4.1% increase for a low to high revenue passenger-kilometres growth rate. Air traffic growth inevitably increases aviation's combustion and acoustic emissions, hence aggravating aviation's environmental impact locally and globally.
HOPE will deliver an integrated aircraft propulsion system comprising two multi-fuel ultra-high bypass ratio (UHBR) turbofan engines, a fuel cell based auxiliary propulsion and power unit (FC-APPU) driving an aft boundary layer ingestion (BLI) propulsor based on tube-wing aircraft configuration. The HOPE system: 1)minimises the combustion and noise emissions during landing and takeoff (LTO), hence the impact on air quality and noise annoyance near airports, without the trade-off of cruise emissions; 2)retrofits the existing aircraft configuration, allowing the substantial emission reduction to be achieved within a short time; 3)de-risks the use of hydrogen solely in existing tube-wing aircraft configurations; 4)smoothens aviation’s energy transition through assessment and exploitation of several greener propulsion technologies at different maturity level.
HOPE emission goals consist of LTO NOx: -50%, CO: -50%, soot: -80%, perceived noise: -20% (~3 dB per operation), and climate impact: -30%, compared to state-of-the-art technology in 2020 (A320neo). To this end, HOPE will: 1)Design an integrated aircraft propulsion system accommodating multi-fuel (kerosene/sustainable aviation fuel +hydrogen) UHBR turbofan engines, FC-APPU, and an aft BLI propulsor; 2)Explore the novel idea of combining a BLI propulsor with FC-APPU for zero-emission taxiing; 3)Model, experiment, and demonstrate for the first time a low emission multi-fuel combustion technology burning H2+kerosene/SAF for future UHBR turbofan engine; 4)Assess societal impact, environmental burden, and cost benefits of the reduced noise and emissions by HOPE technology; 5)Formulate policy and recommendations to introduce HOPE technology.

Status

SIGNED

Call topic

HORIZON-CL5-2022-D5-01-12

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.2 Global Challenges and European Industrial Competitiveness
HORIZON.2.5 Climate, Energy and Mobility
HORIZON.2.5.0 Cross-cutting call topics
HORIZON-CL5-2022-D5-01
HORIZON-CL5-2022-D5-01-12 Towards a silent and ultra-low local air pollution aircraft
HORIZON.2.5.6 Industrial Competitiveness in Transport
HORIZON-CL5-2022-D5-01
HORIZON-CL5-2022-D5-01-12 Towards a silent and ultra-low local air pollution aircraft
HORIZON.2.5.7 Clean, Safe and Accessible Transport and Mobility
HORIZON-CL5-2022-D5-01
HORIZON-CL5-2022-D5-01-12 Towards a silent and ultra-low local air pollution aircraft