INFINITE | Aerospace Composites digitally sensorised from manufacturing to end-of-life

Summary
INFINITE aims to develop sensors and analyser based on the usage of ferromagnetic microwires to be embedded in aerospace composite structural parts, in order to monitor manufacturing and structural health throughout the whole life cycle of the component. The wireless monitoring system will permit producing digital signals and vast sets of data linked with the specimen to create an as-built digital twin of the structure that will also account for the whole history since it was manufactured through all maintenance operations performed, until being optimally recycled. INFINITE intends to deliver improvements in composite manufacturing and structural health monitoring (SHM) by the development of functional sensorised Non-Crimp fabrics (NCF). These fabrics will provide an efficient real-time monitoring system through a self-sensing fibre by wireless monitoring of the fibre position, orientation, strain-stress and temperature. This will be achieved by applying a safe magnetic signal, providing a volumetric information during the manufacture process (temperature and fibre control) but also during the life of the component. In service, the new SHM system will provide information about component integrity, performance and safety; therefore informing and improving maintenance operations. The new sensorised NCF will also enable a new repair capability for complex parts. Integration of microwires in the fabric opens new possibilities in the design of future functional composites using existing sensoring technologies. This advanced quality monitoring has the potential to deliver a significant impact on cost and safety reliability of composite components, providing a competitive advantage of European manufactures and MROs. INFINITE also aims to assess the effect of sensoring hardware on the current methods for composite recycling, investigating the potential for re-using (other applications, sectors, etc.) both sensors and components to provide useful end of life functionality.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101056884
Start date: 01-06-2022
End date: 31-05-2025
Total budget - Public funding: 5 535 286,25 Euro - 5 535 285,00 Euro
Cordis data

Original description

INFINITE aims to develop sensors and analyser based on the usage of ferromagnetic microwires to be embedded in aerospace composite structural parts, in order to monitor manufacturing and structural health throughout the whole life cycle of the component. The wireless monitoring system will permit producing digital signals and vast sets of data linked with the specimen to create an as-built digital twin of the structure that will also account for the whole history since it was manufactured through all maintenance operations performed, until being optimally recycled. INFINITE intends to deliver improvements in composite manufacturing and structural health monitoring (SHM) by the development of functional sensorised Non-Crimp fabrics (NCF). These fabrics will provide an efficient real-time monitoring system through a self-sensing fibre by wireless monitoring of the fibre position, orientation, strain-stress and temperature. This will be achieved by applying a safe magnetic signal, providing a volumetric information during the manufacture process (temperature and fibre control) but also during the life of the component. In service, the new SHM system will provide information about component integrity, performance and safety; therefore informing and improving maintenance operations. The new sensorised NCF will also enable a new repair capability for complex parts. Integration of microwires in the fabric opens new possibilities in the design of future functional composites using existing sensoring technologies. This advanced quality monitoring has the potential to deliver a significant impact on cost and safety reliability of composite components, providing a competitive advantage of European manufactures and MROs. INFINITE also aims to assess the effect of sensoring hardware on the current methods for composite recycling, investigating the potential for re-using (other applications, sectors, etc.) both sensors and components to provide useful end of life functionality.

Status

SIGNED

Call topic

HORIZON-CL5-2021-D5-01-06

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.2 Global Challenges and European Industrial Competitiveness
HORIZON.2.5 Climate, Energy and Mobility
HORIZON.2.5.6 Industrial Competitiveness in Transport
HORIZON-CL5-2021-D5-01
HORIZON-CL5-2021-D5-01-06 Next generation digital aircraft transformation in design, manufacturing, integration and maintenance
HORIZON.2.5.7 Clean, Safe and Accessible Transport and Mobility
HORIZON-CL5-2021-D5-01
HORIZON-CL5-2021-D5-01-06 Next generation digital aircraft transformation in design, manufacturing, integration and maintenance