Summary
The HELENUS project will build, integrate and demonstrate a 500kW solid oxide fuel cell (SOFC) module operating in cogeneration (combined heat and power) mode, in an MSC World class series ocean cruise vessel. The SOFC will be fully integrated- spatially, electrically, and thermally- into the ship design. SOFCs are the most efficient chemical energy converters available today, and are also highly fuel-flexible- thereby remaining highly relevant for the future of waterborne transport. The HELENUS demonstrator will achieve a TRL of 7 at the end of the project, with extended field testing already planned to reach TRL8 by 2028-2029. Success of this project will enable upscaling of mature SOFC technology in ocean cruise liners to as high as 20MW, by as early as 2029. This can unlock over 23% total fuel savings (assuming a hybrid 20MW SOFC+60MW ICE energy system) over a state-of-the-art energy system with only ICEs. The HELENUS consortium involves diverse and accomplished stakeholders representing the entire value chain from technology development to field implementation- creating a rapid pathway towards exploitation and commercialisation.
HELENUS will also undertake extensive simulation, experimental (using an 80kW scaled-down SOFC module), and analytical efforts to demonstrate the applicability of the developed SOFC solution (i) upon significant scale-up (10 MW and beyond), (ii) over duty cycles of alternate applications such as dredging- and offshore- vessels, and (iii) using carbon-neutral fuels with potential for future maritime uptake. Experimental results will be complemented by application case- and lifecycle performance- analyses to assess the broader impact of the technology on waterborne transport. Therefore, HELENUS creates a technological and regulatory roadmap towards a maritime future with scaled-up clean energy systems operating on renewable fuels – thereby fostering innovation and significantly boosting the competitiveness of the EU maritime industry
HELENUS will also undertake extensive simulation, experimental (using an 80kW scaled-down SOFC module), and analytical efforts to demonstrate the applicability of the developed SOFC solution (i) upon significant scale-up (10 MW and beyond), (ii) over duty cycles of alternate applications such as dredging- and offshore- vessels, and (iii) using carbon-neutral fuels with potential for future maritime uptake. Experimental results will be complemented by application case- and lifecycle performance- analyses to assess the broader impact of the technology on waterborne transport. Therefore, HELENUS creates a technological and regulatory roadmap towards a maritime future with scaled-up clean energy systems operating on renewable fuels – thereby fostering innovation and significantly boosting the competitiveness of the EU maritime industry
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101056784 |
Start date: | 01-07-2022 |
End date: | 30-06-2027 |
Total budget - Public funding: | 15 670 245,00 Euro - 14 866 244,00 Euro |
Cordis data
Original description
The HELENUS project will build, integrate and demonstrate a 500kW solid oxide fuel cell (SOFC) module operating in cogeneration (combined heat and power) mode, in an MSC World class series ocean cruise vessel. The SOFC will be fully integrated- spatially, electrically, and thermally- into the ship design. SOFCs are the most efficient chemical energy converters available today, and are also highly fuel-flexible- thereby remaining highly relevant for the future of waterborne transport. The HELENUS demonstrator will achieve a TRL of 7 at the end of the project, with extended field testing already planned to reach TRL8 by 2028-2029. Success of this project will enable upscaling of mature SOFC technology in ocean cruise liners to as high as 20MW, by as early as 2029. This can unlock over 23% total fuel savings (assuming a hybrid 20MW SOFC+60MW ICE energy system) over a state-of-the-art energy system with only ICEs. The HELENUS consortium involves diverse and accomplished stakeholders representing the entire value chain from technology development to field implementation- creating a rapid pathway towards exploitation and commercialisation.HELENUS will also undertake extensive simulation, experimental (using an 80kW scaled-down SOFC module), and analytical efforts to demonstrate the applicability of the developed SOFC solution (i) upon significant scale-up (10 MW and beyond), (ii) over duty cycles of alternate applications such as dredging- and offshore- vessels, and (iii) using carbon-neutral fuels with potential for future maritime uptake. Experimental results will be complemented by application case- and lifecycle performance- analyses to assess the broader impact of the technology on waterborne transport. Therefore, HELENUS creates a technological and regulatory roadmap towards a maritime future with scaled-up clean energy systems operating on renewable fuels – thereby fostering innovation and significantly boosting the competitiveness of the EU maritime industry
Status
SIGNEDCall topic
HORIZON-CL5-2021-D5-01-08Update Date
09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all