FLEXSHIP | Flexible and modular large battery systems for safe on-board integration and operation of electric power, demonstrated in multiple type of ships

Summary
FLEXSHIP will facilitate the transition of the waterborne sector towards climate neutrality by delivering a digital green concept for electrification of vessels consisting of a Green Digital Twin (GDT) for designing fit-for-purpose vessel electrical grid architectures and integrating a large battery capacity system into two existing vessel (DEMO 1 & 2) electrical systems, a compact, low-weight, modular and simple, high-efficiency battery system, and a safe integration guide of the system onboard ensuring system interoperability

The overall goal of FLEXSHIP is to develop and validate safe and reliable, flexible, modular, and scalable solutions for electrification of the waterborne sector. This includes the reliable design and development of modular battery packs; safe on-board integration including the battery system and its associated electrical distribution grid into the vessel’s existing power grid; optimal design of energy management system (EMS) to maximise the operational flexibility and energy efficiency (both full-electric and hybrid), and smart control for improved lifetime of the battery system and critical power components.

The objectives will be achieved by 8 WP and 16 partners within 48 months. In WP1 identification of specification and mapping of requirements will be done. In WP2 the vessel electrical architecture will be designed and optimised by means of the Green Digital Twin. In WP3 the development and optimisation of individual components and sub-systems will be done and the testing of the system at component/sub-system level will consist of hardware-in-the-loop (HiL) and software in the loop (SiL) tests in WP4. The full FLEXSHIP system will be tested in two demonstrations in WP5 with minimum 150nm sailing distance and in WP6 contributing to 300nm by green digital twin and achieving sustainability analysis and business plan. In WP7 the full system will be evaluated in an exploitation strategy. The innovations will be brought from TRL4/5 to TRL7.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101095863
Start date: 01-01-2023
End date: 31-12-2026
Total budget - Public funding: 9 815 629,75 Euro - 7 851 668,00 Euro
Cordis data

Original description

FLEXSHIP will facilitate the transition of the waterborne sector towards climate neutrality by delivering a digital green concept for electrification of vessels consisting of a Green Digital Twin (GDT) for designing fit-for-purpose vessel electrical grid architectures and integrating a large battery capacity system into two existing vessel (DEMO 1 & 2) electrical systems, a compact, low-weight, modular and simple, high-efficiency battery system, and a safe integration guide of the system onboard ensuring system interoperability

The overall goal of FLEXSHIP is to develop and validate safe and reliable, flexible, modular, and scalable solutions for electrification of the waterborne sector. This includes the reliable design and development of modular battery packs; safe on-board integration including the battery system and its associated electrical distribution grid into the vessel’s existing power grid; optimal design of energy management system (EMS) to maximise the operational flexibility and energy efficiency (both full-electric and hybrid), and smart control for improved lifetime of the battery system and critical power components.

The objectives will be achieved by 8 WP and 16 partners within 48 months. In WP1 identification of specification and mapping of requirements will be done. In WP2 the vessel electrical architecture will be designed and optimised by means of the Green Digital Twin. In WP3 the development and optimisation of individual components and sub-systems will be done and the testing of the system at component/sub-system level will consist of hardware-in-the-loop (HiL) and software in the loop (SiL) tests in WP4. The full FLEXSHIP system will be tested in two demonstrations in WP5 with minimum 150nm sailing distance and in WP6 contributing to 300nm by green digital twin and achieving sustainability analysis and business plan. In WP7 the full system will be evaluated in an exploitation strategy. The innovations will be brought from TRL4/5 to TRL7.

Status

SIGNED

Call topic

HORIZON-CL5-2022-D5-01-01

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Zero Emission Waterborne Transport Partnership (ZEWT)
ZEWT Partnership Call 2022
HORIZON-CL5-2022-D5-01-01 Exploiting electrical energy storage systems and better optimising large battery electric power within fully battery electric and hybrid ships (ZEWT Partnership)
Horizon Europe
HORIZON.2 Global Challenges and European Industrial Competitiveness
HORIZON.2.5 Climate, Energy and Mobility
HORIZON.2.5.6 Industrial Competitiveness in Transport
HORIZON-CL5-2022-D5-01
HORIZON-CL5-2022-D5-01-01 Exploiting electrical energy storage systems and better optimising large battery electric power within fully battery electric and hybrid ships (ZEWT Partnership)
HORIZON.2.5.7 Clean, Safe and Accessible Transport and Mobility
HORIZON-CL5-2022-D5-01
HORIZON-CL5-2022-D5-01-01 Exploiting electrical energy storage systems and better optimising large battery electric power within fully battery electric and hybrid ships (ZEWT Partnership)