SOLiD | Sustainable manufacturing and optimized materials and interfaces for lithium metal batteries with digital quality control

Summary
The SOLiD project will create a sustainable and cost-efficient pilot scale manufacturing process for a high energy density, safe and easily recyclable solid-state Li-metal battery. We will use roll-to-roll (R2R) dry extrusion coating for the blend of cathode active material, solid polymer electrolyte, and conducting additives. R2R slot die coated primers on the cathode current collector will enhance adhesion, performance and corrosion resistance of the cell. The polymer electrolyte layer will be R2R coated, using an optimal design for the slot die head. For the Li metal anode, we will utilize cost-efficient R2R pulsed laser deposition, which enables minimizing the Li thickness down to 5 µm. The Li metal production will be combined with an inline process for interfacial engineering to ensure compatibility with the other layers and stability. The process development will be supported by digitalization methods to go towards zero-defect and cost-efficient manufacturing.
The proposed methods enable sustainable manufacturing of Gen. 4b solid state batteries with minimised amount of critical raw materials (Co and Li), and with superior performance and safety: The protective layers enable the use of NMC811, which reduces the amount of Co into minimum without compromising the lifetime, and PLD process helps to minimize the Li thickness. Dry coating eliminates the use of toxic solvents and energy-consuming drying steps, and the digital quality control will reduce the amount of waste. The thickness of each layer will be minimized to reach energy density above 900 Wh/l. Cost will be reduced by cost-effective production methods and by maximizing the yield. Safety and long cycle life are guaranteed by the solid electrolyte and the protective interlayers. Supported by the life-cycle thinking and stakeholder engagement, the SOLiD project will enable the design for a sustainable solid state battery factory of the future.
Results, demos, etc. Show all and search (4)
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101069505
Start date: 01-09-2022
End date: 31-08-2026
Total budget - Public funding: 7 026 001,00 Euro - 6 980 937,00 Euro
Cordis data

Original description

The SOLiD project will create a sustainable and cost-efficient pilot scale manufacturing process for a high energy density, safe and easily recyclable solid-state Li-metal battery. We will use roll-to-roll (R2R) dry extrusion coating for the blend of cathode active material, solid polymer electrolyte, and conducting additives. R2R slot die coated primers on the cathode current collector will enhance adhesion, performance and corrosion resistance of the cell. The polymer electrolyte layer will be R2R coated, using an optimal design for the slot die head. For the Li metal anode, we will utilize cost-efficient R2R pulsed laser deposition, which enables minimizing the Li thickness down to 5 µm. The Li metal production will be combined with an inline process for interfacial engineering to ensure compatibility with the other layers and stability. The process development will be supported by digitalization methods to go towards zero-defect and cost-efficient manufacturing.
The proposed methods enable sustainable manufacturing of Gen. 4b solid state batteries with minimised amount of critical raw materials (Co and Li), and with superior performance and safety: The protective layers enable the use of NMC811, which reduces the amount of Co into minimum without compromising the lifetime, and PLD process helps to minimize the Li thickness. Dry coating eliminates the use of toxic solvents and energy-consuming drying steps, and the digital quality control will reduce the amount of waste. The thickness of each layer will be minimized to reach energy density above 900 Wh/l. Cost will be reduced by cost-effective production methods and by maximizing the yield. Safety and long cycle life are guaranteed by the solid electrolyte and the protective interlayers. Supported by the life-cycle thinking and stakeholder engagement, the SOLiD project will enable the design for a sustainable solid state battery factory of the future.

Status

SIGNED

Call topic

HORIZON-CL5-2021-D2-01-05

Update Date

09-02-2023
Images
No images available.
Geographical location(s)