MATISSE | Multifunctional structures with quasi-solid-state Li-ion battery cells and sensors for the next generation climate neutral aircraft

Summary
MATISSE responds to the fourth bullet of the HORIZON-CL5-2021-D5-01-05 topic “expected outcome”, delivering improved aircraft technologies in the area of multifunctional structures capable of storing electrical energy for hybrid electric aircraft applications. This consists in integrating Li-ion cells into aeronautical composite structures, sharing the load-bearing function with the structure and achieving an aircraft structural element capable of functioning as a battery module. To do so, MATISSE will:
• advance Li-ion battery cell technology, in a non-conventional formulation suitable for bearing structural loads: NMC811 (cathode), Si/C (anode) and bicontinuous polymer-ionic quasi-solid-state electrolyte (BCE), i.e. NMC811|BCE|Si/C, achieving 170-270 Wh/kg at cell level;
• enable the functional integration of Li-ion cells into solid laminate and sandwich composite structures;
• make the structural battery smart, by equipping it with on-cell and in-structure sensors, connected to a chip-based CMU (Cell Monitoring Unit) and PLC (Power Line Communication).

MATISSE delivers a multifunctional structure demonstrator capable of power delivery, power management and safety monitoring. This consists of a full-scale wing tip (1.42 m × 0.69 m) for use in place of the current wingtip assembly installed on Pipistrel Velis Electro, embedding a module of 40 battery cells at 72 VDC. This will undergo a comprehensive testing and characterisation campaign, qualifying the technology at TRL 4 at the end of the project (2025). MATISSE will also encompass aspects related to flight certification, life-cycle sustainability and virtual scale-up, paving the way towards the application of structural batteries as an improved performance key enabling technology for next generation commuter and regional hybrid electric aircraft applications.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101056674
Start date: 01-09-2022
End date: 31-08-2025
Total budget - Public funding: 3 469 707,75 Euro - 3 469 707,00 Euro
Cordis data

Original description

MATISSE responds to the fourth bullet of the HORIZON-CL5-2021-D5-01-05 topic “expected outcome”, delivering improved aircraft technologies in the area of multifunctional structures capable of storing electrical energy for hybrid electric aircraft applications. This consists in integrating Li-ion cells into aeronautical composite structures, sharing the load-bearing function with the structure and achieving an aircraft structural element capable of functioning as a battery module. To do so, MATISSE will:
• advance Li-ion battery cell technology, in a non-conventional formulation suitable for bearing structural loads: NMC811 (cathode), Si/C (anode) and bicontinuous polymer-ionic quasi-solid-state electrolyte (BCE), i.e. NMC811|BCE|Si/C, achieving 170-270 Wh/kg at cell level;
• enable the functional integration of Li-ion cells into solid laminate and sandwich composite structures;
• make the structural battery smart, by equipping it with on-cell and in-structure sensors, connected to a chip-based CMU (Cell Monitoring Unit) and PLC (Power Line Communication).

MATISSE delivers a multifunctional structure demonstrator capable of power delivery, power management and safety monitoring. This consists of a full-scale wing tip (1.42 m × 0.69 m) for use in place of the current wingtip assembly installed on Pipistrel Velis Electro, embedding a module of 40 battery cells at 72 VDC. This will undergo a comprehensive testing and characterisation campaign, qualifying the technology at TRL 4 at the end of the project (2025). MATISSE will also encompass aspects related to flight certification, life-cycle sustainability and virtual scale-up, paving the way towards the application of structural batteries as an improved performance key enabling technology for next generation commuter and regional hybrid electric aircraft applications.

Status

SIGNED

Call topic

HORIZON-CL5-2021-D5-01-05

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.2 Global Challenges and European Industrial Competitiveness
HORIZON.2.5 Climate, Energy and Mobility
HORIZON.2.5.6 Industrial Competitiveness in Transport
HORIZON-CL5-2021-D5-01
HORIZON-CL5-2021-D5-01-05 Greenhouse gas aviation emissions reduction technologies towards climate neutrality by 2050
HORIZON.2.5.7 Clean, Safe and Accessible Transport and Mobility
HORIZON-CL5-2021-D5-01
HORIZON-CL5-2021-D5-01-05 Greenhouse gas aviation emissions reduction technologies towards climate neutrality by 2050