MOXY | GREEN ATMOSPHERIC PLASMA-GENERATED MONOATOMIC OXYGEN TECHNOLOGY FOR CONTACTLESS ATOMIC SCALE CLEANING OF WORKS OF ART/ MOXY

Summary
Climate crisis and unsustainable development increasingly threaten Europe’s tangible cultural heritage (CH), yet environmentally hazardous chemicals persist in CH conservation practice. The Sustainable Development Goals of the EU’s Green Deal vision call for change in CH conservation, but cannot be implemented without effective and affordable green alternatives. Soiling and deposition of carbon-based contaminants (CBC) such as fine particulate pollution, smoke and vandalism all increasingly present formidable challenges to conservators, and are an emerging threat to CH because of the inherent vulnerability of CH surfaces created with unconventional materials and studio practices. Existing CH cleaning methods require toxic solvents, physical contact and water, which can damage many sensitive CH materials, and conservators, equipped with only conventional means, now encounter fragile and untreatable CH where soiling cannot be removed at all. MOXY aims to redefine the paradigm in cleaning methodology towards an eco-conscious approach by creating a transformative green, non-contact technology based on atomic oxygen (AO) to selectively remove CBCs from surfaces that are otherwise untreatable. AO cleaning methodology is a selective, non-mechanical and liquid-free cleaning action, without health or environmental risks, residues or waste. By leveraging a sophisticated yet simple technology, MOXY will enable practitioners to achieve unprecedented results that are green, safer and more effective. To achieve its goals, MOXY will bring together expertise from plasma physics, conservation science, sustainability science, and conservators to conduct a novel investigation of the physical and chemical aspects of AO generation and flux to develop a proof-of-concept AO system, test the viability of AO technology for diverse CH materials, and roadmap AO innovation, to propel AO technology to the bench practice in CH conservation and beyond, with its full potential yet to be realized.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101061336
Start date: 01-11-2022
End date: 31-10-2026
Total budget - Public funding: 4 099 296,00 Euro - 4 099 296,00 Euro
Cordis data

Original description

Climate crisis and unsustainable development increasingly threaten Europe’s tangible cultural heritage (CH), yet environmentally hazardous chemicals persist in CH conservation practice. The Sustainable Development Goals of the EU’s Green Deal vision call for change in CH conservation, but cannot be implemented without effective and affordable green alternatives. Soiling and deposition of carbon-based contaminants (CBC) such as fine particulate pollution, smoke and vandalism all increasingly present formidable challenges to conservators, and are an emerging threat to CH because of the inherent vulnerability of CH surfaces created with unconventional materials and studio practices. Existing CH cleaning methods require toxic solvents, physical contact and water, which can damage many sensitive CH materials, and conservators, equipped with only conventional means, now encounter fragile and untreatable CH where soiling cannot be removed at all. MOXY aims to redefine the paradigm in cleaning methodology towards an eco-conscious approach by creating a transformative green, non-contact technology based on atomic oxygen (AO) to selectively remove CBCs from surfaces that are otherwise untreatable. AO cleaning methodology is a selective, non-mechanical and liquid-free cleaning action, without health or environmental risks, residues or waste. By leveraging a sophisticated yet simple technology, MOXY will enable practitioners to achieve unprecedented results that are green, safer and more effective. To achieve its goals, MOXY will bring together expertise from plasma physics, conservation science, sustainability science, and conservators to conduct a novel investigation of the physical and chemical aspects of AO generation and flux to develop a proof-of-concept AO system, test the viability of AO technology for diverse CH materials, and roadmap AO innovation, to propel AO technology to the bench practice in CH conservation and beyond, with its full potential yet to be realized.

Status

SIGNED

Call topic

HORIZON-CL2-2021-HERITAGE-01-01

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.2 Global Challenges and European Industrial Competitiveness
HORIZON.2.2 Culture, creativity and inclusive society
HORIZON.2.2.2 Cultural Heritage
HORIZON-CL2-2021-HERITAGE-01
HORIZON-CL2-2021-HERITAGE-01-01 Green technologies and materials for cultural heritage