Summary
To reduce climate impact of aviation, decarbonisation is a major challenge. Current combustion chambers are burning hydrocarbon fuels, such as kerosene or more recently emerging SAF products. Hydrogen is also considered today as a promising energy carrier but the burning of hydrogen creates radically new challenges which need to be understood and anticipated.
HESTIA specifically focuses on increasing the scientific knowledge of the hydrogen-air combustion of future hydrogen fuelled aero-engines. The related physical phenomena will be evaluated through the execution of fundamental experiments. This experimental work will be closely coupled to numerical activities which will adapt or develop models and progressively increase their maturity so that they can be integrated into industrial CFD codes.
Different challenges are to be addressed in HESTIA project in a wide range of topics:
- Improvement of the scientific understanding of hydrogen-air turbulent combustion: preferential diffusion of hydrogen, modification of turbulent burning velocity, thermoacoustics, NOx emissions, adaptation of optical diagnostics;
- Assessment of innovative injection systems for H2 optimized combustion chamber: flashback risk, lean-blow out, stability, NOx emission minimisation, ignition;
- Improvement of CFD tools and methodologies for numerical modelling of H2 combustion in both academic and industrial configurations.
To this end, HESTIA gathers 17 universities and research centres as well as the 6 European aero-engine manufacturers to significantly prepare in a coherent and robust manner for the future development of environmentally friendly combustion chambers.
HESTIA specifically focuses on increasing the scientific knowledge of the hydrogen-air combustion of future hydrogen fuelled aero-engines. The related physical phenomena will be evaluated through the execution of fundamental experiments. This experimental work will be closely coupled to numerical activities which will adapt or develop models and progressively increase their maturity so that they can be integrated into industrial CFD codes.
Different challenges are to be addressed in HESTIA project in a wide range of topics:
- Improvement of the scientific understanding of hydrogen-air turbulent combustion: preferential diffusion of hydrogen, modification of turbulent burning velocity, thermoacoustics, NOx emissions, adaptation of optical diagnostics;
- Assessment of innovative injection systems for H2 optimized combustion chamber: flashback risk, lean-blow out, stability, NOx emission minimisation, ignition;
- Improvement of CFD tools and methodologies for numerical modelling of H2 combustion in both academic and industrial configurations.
To this end, HESTIA gathers 17 universities and research centres as well as the 6 European aero-engine manufacturers to significantly prepare in a coherent and robust manner for the future development of environmentally friendly combustion chambers.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101056865 |
Start date: | 01-09-2022 |
End date: | 31-08-2026 |
Total budget - Public funding: | 5 043 800,00 Euro - 5 043 800,00 Euro |
Cordis data
Original description
To reduce climate impact of aviation, decarbonisation is a major challenge. Current combustion chambers are burning hydrocarbon fuels, such as kerosene or more recently emerging SAF products. Hydrogen is also considered today as a promising energy carrier but the burning of hydrogen creates radically new challenges which need to be understood and anticipated.HESTIA specifically focuses on increasing the scientific knowledge of the hydrogen-air combustion of future hydrogen fuelled aero-engines. The related physical phenomena will be evaluated through the execution of fundamental experiments. This experimental work will be closely coupled to numerical activities which will adapt or develop models and progressively increase their maturity so that they can be integrated into industrial CFD codes.
Different challenges are to be addressed in HESTIA project in a wide range of topics:
- Improvement of the scientific understanding of hydrogen-air turbulent combustion: preferential diffusion of hydrogen, modification of turbulent burning velocity, thermoacoustics, NOx emissions, adaptation of optical diagnostics;
- Assessment of innovative injection systems for H2 optimized combustion chamber: flashback risk, lean-blow out, stability, NOx emission minimisation, ignition;
- Improvement of CFD tools and methodologies for numerical modelling of H2 combustion in both academic and industrial configurations.
To this end, HESTIA gathers 17 universities and research centres as well as the 6 European aero-engine manufacturers to significantly prepare in a coherent and robust manner for the future development of environmentally friendly combustion chambers.
Status
SIGNEDCall topic
HORIZON-CL5-2021-D5-01-05Update Date
09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all