Summary
CARBIOW project addresses green transition and circular economy by proposing novel technologies that cover the whole process of conversion of organic waste to biofuels. On one hand, hard-to-utilize organic waste such as organic fraction of municipal solid waste and residues from biorefinery and biological processes are utilized to highlight a new bioenergy source. On the other hand, new technologies will be developed from TRL 2 to 5. The proposed technologies via CARBIOW enable Europe to take the lead and advancement in several fields of energy generation and energy sector decarbonization. Moreover, energy security, economical boost, local energy independenc,e and job creation are addressed. Torrefaction as an emerging technology converts the very heterogeneous and wet organic waste to a high-quality solid biofuel. Besides, torgas will be combusted with oxygen to generate energy for torrefaction, and to obtain nearly pure CO2. A novel technology i.e., oxygen-blown gasification in oxygen carrier aided systems will convert the torrefied organic waste to clean syngas with very high efficiency in terms of energy and yield. The syngas will be used in the Fischer-Tropsch process with a novel reactor and novel 3D printed catalysts aiming to produce aviation (kerosene) and marine (alcohols) biofuels. The CO2 from the oxy-conversion steps will be fixed in the resulting ashes from the same process via carbonization to make cement-based product. So, CARBIOW addresses another goal that is the decarbonization of cement industry, while making the biofuels to be carbon negative. The diversity and strength of the experts within the consortium of CARBIOW will guarantee the technological, technical, and societal advancement of what is proposed, most importantly, the exploitation and perspective of the whole process will be evaluated by the leaders and industrial sites to pledge the feasibility of the scale-up and further development of the proposed process.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101084443 |
Start date: | 01-10-2022 |
End date: | 31-03-2026 |
Total budget - Public funding: | 4 850 123,75 Euro - 4 850 123,00 Euro |
Cordis data
Original description
CARBIOW project addresses green transition and circular economy by proposing novel technologies that cover the whole process of conversion of organic waste to biofuels. On one hand, hard-to-utilize organic waste such as organic fraction of municipal solid waste and residues from biorefinery and biological processes are utilized to highlight a new bioenergy source. On the other hand, new technologies will be developed from TRL 2 to 5. The proposed technologies via CARBIOW enable Europe to take the lead and advancement in several fields of energy generation and energy sector decarbonization. Moreover, energy security, economical boost, local energy independenc,e and job creation are addressed. Torrefaction as an emerging technology converts the very heterogeneous and wet organic waste to a high-quality solid biofuel. Besides, torgas will be combusted with oxygen to generate energy for torrefaction, and to obtain nearly pure CO2. A novel technology i.e., oxygen-blown gasification in oxygen carrier aided systems will convert the torrefied organic waste to clean syngas with very high efficiency in terms of energy and yield. The syngas will be used in the Fischer-Tropsch process with a novel reactor and novel 3D printed catalysts aiming to produce aviation (kerosene) and marine (alcohols) biofuels. The CO2 from the oxy-conversion steps will be fixed in the resulting ashes from the same process via carbonization to make cement-based product. So, CARBIOW addresses another goal that is the decarbonization of cement industry, while making the biofuels to be carbon negative. The diversity and strength of the experts within the consortium of CARBIOW will guarantee the technological, technical, and societal advancement of what is proposed, most importantly, the exploitation and perspective of the whole process will be evaluated by the leaders and industrial sites to pledge the feasibility of the scale-up and further development of the proposed process.Status
SIGNEDCall topic
HORIZON-CL5-2021-D3-03-09Update Date
09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping