Summary
Diazotrophs regulate marine productivity in 60% of our oceans by alleviating nitrogen limitation, contributing to carbon (C) sequestration through the N2-primed Prokaryotic C Pump (PCP). Yet we don’t know how much diazotroph-derived organic C (OC) is exported to the deep ocean, which prevents robust predictions of how the ocean contributes to CO2 sequestration and climate change mitigation. This knowledge gap is due to the multiple and complex pathways by which diazotrophs are exported to the deep ocean, which quantification and drivers of variability are impossible to capture with current methods. HOPE will bridge this gap thanks to a new isotopic technique I developed and to a coupling between lab and in situ approaches examining processes occurring at different spatiotemporal scales, and capable of capturing both transient and seasonal features of the PCP. HOPE will: 1.Determine how various diazotrophs aggregate, sink and are remineralized by using an automated experimental water column I designed for this proposal 2.Decipher by which pathways diazotroph-derived OC is exported to the deep ocean thanks to a pioneer approach combining single-cell isotopic analyses, in-depth microbiological characterization of sinking particles and geochemical budgets 3.Investigate how environmental drivers control the whole process, from the surface diazotroph community up to their eventual export to the deep ocean, by deploying a cutting-edge autonomous platform, unique as it performs synoptic measurements both in and below the euphotic zone at high resolution (hourly/daily). In its final stage, HOPE will use the generated data to provide global, spatially resolved estimates of the contribution of diazotrophs to overall OC export. Based on my expertise at the interface between microbial oceanography and geochemistry, HOPE has the potential to deliver a multidisciplinary and ground-breaking knowledge leading to potential scientific-based recommendations to fight climate change.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101044637 |
Start date: | 01-01-2023 |
End date: | 31-12-2027 |
Total budget - Public funding: | 2 493 821,00 Euro - 2 493 821,00 Euro |
Cordis data
Original description
Diazotrophs regulate marine productivity in 60% of our oceans by alleviating nitrogen limitation, contributing to carbon (C) sequestration through the N2-primed Prokaryotic C Pump (PCP). Yet we don’t know how much diazotroph-derived organic C (OC) is exported to the deep ocean, which prevents robust predictions of how the ocean contributes to CO2 sequestration and climate change mitigation. This knowledge gap is due to the multiple and complex pathways by which diazotrophs are exported to the deep ocean, which quantification and drivers of variability are impossible to capture with current methods. HOPE will bridge this gap thanks to a new isotopic technique I developed and to a coupling between lab and in situ approaches examining processes occurring at different spatiotemporal scales, and capable of capturing both transient and seasonal features of the PCP. HOPE will: 1.Determine how various diazotrophs aggregate, sink and are remineralized by using an automated experimental water column I designed for this proposal 2.Decipher by which pathways diazotroph-derived OC is exported to the deep ocean thanks to a pioneer approach combining single-cell isotopic analyses, in-depth microbiological characterization of sinking particles and geochemical budgets 3.Investigate how environmental drivers control the whole process, from the surface diazotroph community up to their eventual export to the deep ocean, by deploying a cutting-edge autonomous platform, unique as it performs synoptic measurements both in and below the euphotic zone at high resolution (hourly/daily). In its final stage, HOPE will use the generated data to provide global, spatially resolved estimates of the contribution of diazotrophs to overall OC export. Based on my expertise at the interface between microbial oceanography and geochemistry, HOPE has the potential to deliver a multidisciplinary and ground-breaking knowledge leading to potential scientific-based recommendations to fight climate change.Status
SIGNEDCall topic
ERC-2021-COGUpdate Date
09-02-2023
Images
No images available.
Geographical location(s)