Summary
Topological phases of matter emerge from the interplay between broken symmetries and many-body physics and exhibit many fascinating quantum phenomena. Ultrafast switching between different topological phases using light pulses holds the promise for disruptive optoelectronic functionalities, like dissipationless and fault-tolerant logical operations. However, the lack of proper observable being simultaneously sensitive to the local (in momentum-space) topology of the band structure and compatible with time-resolved measurements prevents the real-time monitoring of ultrafast non-equilibrium topological phase transitions.
I will address this fundamental challenge by introducing innovative control and measurement methodologies using tailored light pulses in time-, angle- and polarization-resolved extreme ultraviolet photoemission spectroscopy. This approach will enable to follow the ultrafast evolution of the electronic band structure’s local topology, in photoexcited quantum materials. This will represent a major advance in photoemission spectroscopy, by moving from band structure mapping to accessing the dynamical evolution of the Bloch wavefunction of solids.
I will use these novel time- and quantum-state-resolved dichroic observables to investigate the rich non-equilibrium physics underlying ultrafast topological phase transitions occurring on various timescales following impulsive optical excitation using shaped pump pulses: i) during the formation of hybrid light-matter (Floquet-Bloch) states, ii) upon the transient modification of electronic correlations, and iii) following the excitation of coherent phonon modes. UTOPIQ will deliver a dramatically improved understanding of the interplay between the non-equilibrium behaviour and non-trivial topology in photoexcited quantum materials, while further representing a decisive step towards the development of the field of ultrafast ‘on demand’ topology.
I will address this fundamental challenge by introducing innovative control and measurement methodologies using tailored light pulses in time-, angle- and polarization-resolved extreme ultraviolet photoemission spectroscopy. This approach will enable to follow the ultrafast evolution of the electronic band structure’s local topology, in photoexcited quantum materials. This will represent a major advance in photoemission spectroscopy, by moving from band structure mapping to accessing the dynamical evolution of the Bloch wavefunction of solids.
I will use these novel time- and quantum-state-resolved dichroic observables to investigate the rich non-equilibrium physics underlying ultrafast topological phase transitions occurring on various timescales following impulsive optical excitation using shaped pump pulses: i) during the formation of hybrid light-matter (Floquet-Bloch) states, ii) upon the transient modification of electronic correlations, and iii) following the excitation of coherent phonon modes. UTOPIQ will deliver a dramatically improved understanding of the interplay between the non-equilibrium behaviour and non-trivial topology in photoexcited quantum materials, while further representing a decisive step towards the development of the field of ultrafast ‘on demand’ topology.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101076639 |
Start date: | 01-09-2023 |
End date: | 31-08-2028 |
Total budget - Public funding: | 1 754 304,00 Euro - 1 754 304,00 Euro |
Cordis data
Original description
Topological phases of matter emerge from the interplay between broken symmetries and many-body physics and exhibit many fascinating quantum phenomena. Ultrafast switching between different topological phases using light pulses holds the promise for disruptive optoelectronic functionalities, like dissipationless and fault-tolerant logical operations. However, the lack of proper observable being simultaneously sensitive to the local (in momentum-space) topology of the band structure and compatible with time-resolved measurements prevents the real-time monitoring of ultrafast non-equilibrium topological phase transitions.I will address this fundamental challenge by introducing innovative control and measurement methodologies using tailored light pulses in time-, angle- and polarization-resolved extreme ultraviolet photoemission spectroscopy. This approach will enable to follow the ultrafast evolution of the electronic band structure’s local topology, in photoexcited quantum materials. This will represent a major advance in photoemission spectroscopy, by moving from band structure mapping to accessing the dynamical evolution of the Bloch wavefunction of solids.
I will use these novel time- and quantum-state-resolved dichroic observables to investigate the rich non-equilibrium physics underlying ultrafast topological phase transitions occurring on various timescales following impulsive optical excitation using shaped pump pulses: i) during the formation of hybrid light-matter (Floquet-Bloch) states, ii) upon the transient modification of electronic correlations, and iii) following the excitation of coherent phonon modes. UTOPIQ will deliver a dramatically improved understanding of the interplay between the non-equilibrium behaviour and non-trivial topology in photoexcited quantum materials, while further representing a decisive step towards the development of the field of ultrafast ‘on demand’ topology.
Status
SIGNEDCall topic
ERC-2022-STGUpdate Date
09-02-2023
Images
No images available.
Geographical location(s)