CereCode | Neuronal computations and population dynamics in the Cerebellar Nuclei during motor behaviours

Summary
Motor control involves many brain structures, handling different behavioural aspects such as planning, learning and execution of movements. In vertebrates, while downstream structures such as motor nuclei in the brainstem seem to encode simple stereotyped movements, other structures such as the motor cortex seem to encode higher level aspects of motricity such as goal oriented complex movements. The cerebel-lum, a key structure for movement coordination and motor learning is extensively connected to higher struc-tures such as the neocortex, but also to brainstem nuclei controlling simple movements. How the cerebel-lum influences downstream structures depends on the computations occurring in its output layer, the Cere-bellar Nuclei (CN), which integrates information from the cerebellar cortex and from extracerebellar inputs. However, these integration mechanisms and population coding in the CN are not well understood, because technological and experimental difficulties have limited the study of CN processing rules both at the cellu-lar and at the population level. CereCode will address unanswered fundamental questions that undermine our understanding of cerebellar-dependent motor control. 1) What is the functional connectivity in the CN network and how are sensorimotor inputs from different parts of the brain integrated? 2) How are CN sen-sorimotor computations represented at the population level? Are there functional modules controlling ste-reotyped movements or are different tasks encoded within the same population? 3) What is the individual role of the different extracerebellar inputs during behaviour? CereCode will address these issues combining recent discoveries in CN neurophysiology, viral strategies, optogenetics, and a new imaging tools that I developed based on 3D-two-photon acousto-optic-lens imaging and GRIN lenses, shining light on the neu-ral code of an essential brain structure.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101042329
Start date: 01-10-2022
End date: 30-09-2027
Total budget - Public funding: 1 499 038,00 Euro - 1 499 038,00 Euro
Cordis data

Original description

Motor control involves many brain structures, handling different behavioural aspects such as planning, learning and execution of movements. In vertebrates, while downstream structures such as motor nuclei in the brainstem seem to encode simple stereotyped movements, other structures such as the motor cortex seem to encode higher level aspects of motricity such as goal oriented complex movements. The cerebel-lum, a key structure for movement coordination and motor learning is extensively connected to higher struc-tures such as the neocortex, but also to brainstem nuclei controlling simple movements. How the cerebel-lum influences downstream structures depends on the computations occurring in its output layer, the Cere-bellar Nuclei (CN), which integrates information from the cerebellar cortex and from extracerebellar inputs. However, these integration mechanisms and population coding in the CN are not well understood, because technological and experimental difficulties have limited the study of CN processing rules both at the cellu-lar and at the population level. CereCode will address unanswered fundamental questions that undermine our understanding of cerebellar-dependent motor control. 1) What is the functional connectivity in the CN network and how are sensorimotor inputs from different parts of the brain integrated? 2) How are CN sen-sorimotor computations represented at the population level? Are there functional modules controlling ste-reotyped movements or are different tasks encoded within the same population? 3) What is the individual role of the different extracerebellar inputs during behaviour? CereCode will address these issues combining recent discoveries in CN neurophysiology, viral strategies, optogenetics, and a new imaging tools that I developed based on 3D-two-photon acousto-optic-lens imaging and GRIN lenses, shining light on the neu-ral code of an essential brain structure.

Status

SIGNED

Call topic

ERC-2021-STG

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.0 Cross-cutting call topics
ERC-2021-STG ERC STARTING GRANTS
HORIZON.1.1.1 Frontier science
ERC-2021-STG ERC STARTING GRANTS