Summary
Zeolites are a class of nanoporous crystalline inorganic materials that rank among the most versatile catalysts and are capable of facilitating the development of sustainable chemistry, separation and emerging processes.
The aim of ZEOLIghT is to understand the fundamental molecular-level interactions leading to specific crystallization events of nanozeolites to direct their properties. The three challenges are: 1. rational formation of molecularly-ordered precursors with different tetrahedral (T)-atoms, understanding the fundamentals of zeolite growth kinetics in colloidal and high solid precursors resulting in frameworks with controlled defects and flexible structures (Fundamental understanding of defects and flexibility of nanozeolites), 2. translate the discovery at the atomistic scale to development of novel nanozeolites and fine-tuning of relevant properties including crystals size, pore dimension, framework structure, bulk chemistry, and stability (Engineering nanozeolites), and 3. relate the defects and flexibility as the origin of the remarkable properties of ultra-stable zeolites for applications in heterogeneous catalysis: the selection of the non-oxidative conversion of methane reaction as a specific case, but not limited to, will be considered (Application). The mysterious “defects” associated with the generation of various silanol species, Brønsted acid sites, and vacancies as integral parts of the reaction center of zeolites and their relation to the framework flexibility will be elucidated by advanced characterization.
The ZEOLIghT project will be the fundamental scientific driver for seeking novel nanozeolites and fully realize the knowledge gained in global cases where porous materials are considered. The key achievements are understanding the properties of nanozeolites by uncovering the consequences of defects and flexibility. The nanozeolites will claim a sizeable share of the global zeolite market for both classical and emerging applications.
The aim of ZEOLIghT is to understand the fundamental molecular-level interactions leading to specific crystallization events of nanozeolites to direct their properties. The three challenges are: 1. rational formation of molecularly-ordered precursors with different tetrahedral (T)-atoms, understanding the fundamentals of zeolite growth kinetics in colloidal and high solid precursors resulting in frameworks with controlled defects and flexible structures (Fundamental understanding of defects and flexibility of nanozeolites), 2. translate the discovery at the atomistic scale to development of novel nanozeolites and fine-tuning of relevant properties including crystals size, pore dimension, framework structure, bulk chemistry, and stability (Engineering nanozeolites), and 3. relate the defects and flexibility as the origin of the remarkable properties of ultra-stable zeolites for applications in heterogeneous catalysis: the selection of the non-oxidative conversion of methane reaction as a specific case, but not limited to, will be considered (Application). The mysterious “defects” associated with the generation of various silanol species, Brønsted acid sites, and vacancies as integral parts of the reaction center of zeolites and their relation to the framework flexibility will be elucidated by advanced characterization.
The ZEOLIghT project will be the fundamental scientific driver for seeking novel nanozeolites and fully realize the knowledge gained in global cases where porous materials are considered. The key achievements are understanding the properties of nanozeolites by uncovering the consequences of defects and flexibility. The nanozeolites will claim a sizeable share of the global zeolite market for both classical and emerging applications.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101054004 |
Start date: | 01-10-2022 |
End date: | 30-09-2027 |
Total budget - Public funding: | 2 500 000,00 Euro - 2 500 000,00 Euro |
Cordis data
Original description
Zeolites are a class of nanoporous crystalline inorganic materials that rank among the most versatile catalysts and are capable of facilitating the development of sustainable chemistry, separation and emerging processes.The aim of ZEOLIghT is to understand the fundamental molecular-level interactions leading to specific crystallization events of nanozeolites to direct their properties. The three challenges are: 1. rational formation of molecularly-ordered precursors with different tetrahedral (T)-atoms, understanding the fundamentals of zeolite growth kinetics in colloidal and high solid precursors resulting in frameworks with controlled defects and flexible structures (Fundamental understanding of defects and flexibility of nanozeolites), 2. translate the discovery at the atomistic scale to development of novel nanozeolites and fine-tuning of relevant properties including crystals size, pore dimension, framework structure, bulk chemistry, and stability (Engineering nanozeolites), and 3. relate the defects and flexibility as the origin of the remarkable properties of ultra-stable zeolites for applications in heterogeneous catalysis: the selection of the non-oxidative conversion of methane reaction as a specific case, but not limited to, will be considered (Application). The mysterious “defects” associated with the generation of various silanol species, Brønsted acid sites, and vacancies as integral parts of the reaction center of zeolites and their relation to the framework flexibility will be elucidated by advanced characterization.
The ZEOLIghT project will be the fundamental scientific driver for seeking novel nanozeolites and fully realize the knowledge gained in global cases where porous materials are considered. The key achievements are understanding the properties of nanozeolites by uncovering the consequences of defects and flexibility. The nanozeolites will claim a sizeable share of the global zeolite market for both classical and emerging applications.
Status
SIGNEDCall topic
ERC-2021-ADGUpdate Date
09-02-2023
Images
No images available.
Geographical location(s)