Summary
Devices such as mobile phones, computers, and batteries have become an integrated part of our society. An important challenge in such devices and device components is to avoid overheating by using suitable thermal management. Currently, this typically relies on heat dissipation by electrons in metals such as copper. More recent approaches have explored heat dissipation by phonons in graphene and related materials, which can have a thermal conductivity that is an order of magnitude higher than that of typical metals. In this project, we aim to demonstrate thermal management technology, where heat dissipation takes place by graphene electrons, rather than phonons. This is a promising approach, as the thermal conductivity of graphene electrons can be another order of magnitude larger than that of graphene phonons, as we recently demonstrated in our ERC-funded research. Furthermore, it allows for direct electronic heat dissipation without the intermediate step via phonons.
The two main objectives of this project are i) to demonstrate graphene-electron-based heat dissipation in relevant electronic devices; and ii) to develop a business creation plan related to this technology. These objectives will be addressed by an experienced and multidisciplinary team consisting of scientists, technologists and business developers. On the technical level, we will fabricate and characterize three specific proof-of-concept demonstrator devices. On the commercial level, we will work on intellectual property protection, leverage our network of partners from relevant industries, and design a business creation strategy. There will be constant feedback between the technical level and the commercial level of the project, in order to establish how the technology will create the most added value adapted to the market needs, and thereby create most value for society.
The two main objectives of this project are i) to demonstrate graphene-electron-based heat dissipation in relevant electronic devices; and ii) to develop a business creation plan related to this technology. These objectives will be addressed by an experienced and multidisciplinary team consisting of scientists, technologists and business developers. On the technical level, we will fabricate and characterize three specific proof-of-concept demonstrator devices. On the commercial level, we will work on intellectual property protection, leverage our network of partners from relevant industries, and design a business creation strategy. There will be constant feedback between the technical level and the commercial level of the project, in order to establish how the technology will create the most added value adapted to the market needs, and thereby create most value for society.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101069363 |
Start date: | 01-08-2022 |
End date: | 31-01-2024 |
Total budget - Public funding: | - 150 000,00 Euro |
Cordis data
Original description
Devices such as mobile phones, computers, and batteries have become an integrated part of our society. An important challenge in such devices and device components is to avoid overheating by using suitable thermal management. Currently, this typically relies on heat dissipation by electrons in metals such as copper. More recent approaches have explored heat dissipation by phonons in graphene and related materials, which can have a thermal conductivity that is an order of magnitude higher than that of typical metals. In this project, we aim to demonstrate thermal management technology, where heat dissipation takes place by graphene electrons, rather than phonons. This is a promising approach, as the thermal conductivity of graphene electrons can be another order of magnitude larger than that of graphene phonons, as we recently demonstrated in our ERC-funded research. Furthermore, it allows for direct electronic heat dissipation without the intermediate step via phonons.The two main objectives of this project are i) to demonstrate graphene-electron-based heat dissipation in relevant electronic devices; and ii) to develop a business creation plan related to this technology. These objectives will be addressed by an experienced and multidisciplinary team consisting of scientists, technologists and business developers. On the technical level, we will fabricate and characterize three specific proof-of-concept demonstrator devices. On the commercial level, we will work on intellectual property protection, leverage our network of partners from relevant industries, and design a business creation strategy. There will be constant feedback between the technical level and the commercial level of the project, in order to establish how the technology will create the most added value adapted to the market needs, and thereby create most value for society.
Status
SIGNEDCall topic
ERC-2022-POC1Update Date
09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping