Summary
Biochips proposes an innovative bottom-up strategy to directly fabricate cell-laden devices that recreate the unique biophysical cues from the native fibrillar ECMs and allow the design of bioengineered microtissues with arbitrary geometries. The proposed platform combines the concepts of matrix-assisted 3D free-form bioprinting with the controlled self-assembly of colloidal cellulose nanocrystals (CNCs) to fabricate cell-laden constructs embedded within its own fibrillar CNC hydrogel device. The proposed platform can array multiple independent single organ models in a high-throughput manner (number will depend on the desired model complexity and well plate used) or link multiple tissue/organ models together with microfluidic circuits that can be user-defined on their CAD designs. The BioCHIPS system enables high-resolution printing of complex and perfusable multicellular constructs without separating membranes or plastic barriers, where cells can interact through signaling gradients created by compartmentalization in a bioinspired fibrillar matrix, and supporting their long-term culture. In addition to optical transparency for real time monitoring, CNCs hydrogels can be bioorthogonally digested to release the embedded constructs for post-bioprinting analysis and processing, which is a crucial advantage in organ/tissue-on-chip applications. Beyond the fabrication of perfusable microfluidic channels and cell-laden chambers for the development of 3D microphysiological systems as in vitro models, the intrinsic characteristics of this bioinspired platform, further enables its scale up to produce tissue engineered constructs within its own bioreactor for in vitro maturation and biological tests at higher scales.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101069302 |
Start date: | 01-11-2022 |
End date: | 30-04-2024 |
Total budget - Public funding: | - 150 000,00 Euro |
Cordis data
Original description
Biochips proposes an innovative bottom-up strategy to directly fabricate cell-laden devices that recreate the unique biophysical cues from the native fibrillar ECMs and allow the design of bioengineered microtissues with arbitrary geometries. The proposed platform combines the concepts of matrix-assisted 3D free-form bioprinting with the controlled self-assembly of colloidal cellulose nanocrystals (CNCs) to fabricate cell-laden constructs embedded within its own fibrillar CNC hydrogel device. The proposed platform can array multiple independent single organ models in a high-throughput manner (number will depend on the desired model complexity and well plate used) or link multiple tissue/organ models together with microfluidic circuits that can be user-defined on their CAD designs. The BioCHIPS system enables high-resolution printing of complex and perfusable multicellular constructs without separating membranes or plastic barriers, where cells can interact through signaling gradients created by compartmentalization in a bioinspired fibrillar matrix, and supporting their long-term culture. In addition to optical transparency for real time monitoring, CNCs hydrogels can be bioorthogonally digested to release the embedded constructs for post-bioprinting analysis and processing, which is a crucial advantage in organ/tissue-on-chip applications. Beyond the fabrication of perfusable microfluidic channels and cell-laden chambers for the development of 3D microphysiological systems as in vitro models, the intrinsic characteristics of this bioinspired platform, further enables its scale up to produce tissue engineered constructs within its own bioreactor for in vitro maturation and biological tests at higher scales.Status
SIGNEDCall topic
ERC-2022-POC1Update Date
09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping