coralINT | Integrated Niche Theory: linking environmental, compositional and functional change on coral reefs

Summary
Idea: CoralINT aims to deliver the ability to predict spatio-temporal change in biodiversity and the consequences of this change for ecosystem function. To achieve this aim, I will develop an Integrated Niche Theory linking three niche concepts: Grinnell’s niche (what a species needs), Elton’s niche (what a species does) and niche construction (how the species function changes the environment). The key to this integration lies in how species are sorted along each of the niche axes (environmental gradients, functional rates and niche construction rates). I will map the dynamic implications of different types of bivariate sorting to the development of positive and negative feedback loops. This new theory will allow predicting the indirect consequences of selection on one axis to change along the other two axes. I will test INT with environmental, compositional, and functional data extracted from 3D maps of coral reefs and its coral inhabitants. Ground breaking features: CoralINT sits at the interface between theory development and cutting-edge empirical data. I anticipate coralINT will produce 3D maps for a total area of >26,600 m2 with mm scale resolution, distributed among 100 sites along a 2,000 km latitudinal gradient. Within these maps we will follow >100,000 coral colonies through time, measuring and inferring structural and demographic rates across >200 species and environmental variation in space and time. Working at organismal and ecosystem scales will enable coralINT to develop mechanistic understanding of the processes connecting environmental, compositional and functional change. Objectives: develop a new Integrated Niche Theory; quantify the effects of the environment on corals’ distribution and functional rates; determine if function can be predicted from coral and reef structural traits; quantify the prevalence and evolutionary implications of coral niche construction. Feasibility:We have collected proof of concept data for each data type.
Results, demos, etc. Show all and search (1)
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101044975
Start date: 01-11-2022
End date: 31-10-2027
Total budget - Public funding: 1 999 995,00 Euro - 1 999 995,00 Euro
Cordis data

Original description

Idea: CoralINT aims to deliver the ability to predict spatio-temporal change in biodiversity and the consequences of this change for ecosystem function. To achieve this aim, I will develop an Integrated Niche Theory linking three niche concepts: Grinnell’s niche (what a species needs), Elton’s niche (what a species does) and niche construction (how the species function changes the environment). The key to this integration lies in how species are sorted along each of the niche axes (environmental gradients, functional rates and niche construction rates). I will map the dynamic implications of different types of bivariate sorting to the development of positive and negative feedback loops. This new theory will allow predicting the indirect consequences of selection on one axis to change along the other two axes. I will test INT with environmental, compositional, and functional data extracted from 3D maps of coral reefs and its coral inhabitants. Ground breaking features: CoralINT sits at the interface between theory development and cutting-edge empirical data. I anticipate coralINT will produce 3D maps for a total area of >26,600 m2 with mm scale resolution, distributed among 100 sites along a 2,000 km latitudinal gradient. Within these maps we will follow >100,000 coral colonies through time, measuring and inferring structural and demographic rates across >200 species and environmental variation in space and time. Working at organismal and ecosystem scales will enable coralINT to develop mechanistic understanding of the processes connecting environmental, compositional and functional change. Objectives: develop a new Integrated Niche Theory; quantify the effects of the environment on corals’ distribution and functional rates; determine if function can be predicted from coral and reef structural traits; quantify the prevalence and evolutionary implications of coral niche construction. Feasibility:We have collected proof of concept data for each data type.

Status

SIGNED

Call topic

ERC-2021-COG

Update Date

09-02-2023
Images
No images available.
Geographical location(s)