PreCoM | Predictive Cognitive Maintenance Decision Support System

Summary

Cheaper and more powerful sensors, together with big data analytics, offer an unprecedented opportunity to track machine-tool performance and health condition. However, manufacturers only spend 15% of their total maintenance costs on predictive (vs reactive or preventative) maintenance.

The project will deploy and test a predictive cognitive maintenance decision-support system able to identify and localize damage, assess damage severity, predict damage evolution, assess remaining asset life, reduce the probability of false alarms, provide more accurate failure detection, issue notices to conduct preventive maintenance actions and ultimately increase in-service efficiency of machines by at least 10%. The platform includes 4 modules:

  • A data acquisition module leveraging external sensors as well as sensors directly embedded in the machine tool components,
  • An artificial intelligence module combining physical models, statistical models and machine-learning algorithms able to track individual health condition and supporting a large range of assets and dynamic operating conditions,
  • A secure integration module connecting the platform to production planning and maintenance systems via a private cloud and providing additional safety, self-healing and self-learning capabilities and
  • A human interface module including production dashboards and augmented reality interfaces for facilitating maintenance tasks.

The consortium includes 3 end-user factories, 3 machine-tool suppliers, 1 leading component supplier, 4 innovative SMEs, 3 research organizations and 3 academic institutions. Together, we will validate the platform in a broad spectrum of real-life industrial scenarios (low volume, high volume and continuous manufacturing). We will also demonstrate the direct impact of the platform on maintainability, availability, work safety and costs in order to document the results in detailed business cases for widespread industry dissemination and exploitation.

Unfold all
/
Fold all
More information & hyperlinks
Web resources: http://www.precom-project.eu
https://cordis.europa.eu/project/id/768575
Start date: 01-11-2017
End date: 28-02-2021
Total budget - Public funding: 7 263 332,00 Euro - 6 146 402,00 Euro
Twitter: @PreCoM_Project
Cordis data

Original description

Cheaper and more powerful sensors, together with big data analytics, offer an unprecedented opportunity to track machine-tool performance and health condition. However, manufacturers only spend 15% of their total maintenance costs on predictive (vs reactive or preventative) maintenance.
The project will deploy and test a predictive cognitive maintenance decision-support system able to identify and localize damage, assess damage severity, predict damage evolution, assess remaining asset life, reduce the probability of false alarms, provide more accurate failure detection, issue notices to conduct preventive maintenance actions and ultimately increase in-service efficiency of machines by at least 10%.
The platform includes 4 modules: 1) a data acquisition module leveraging external sensors as well as sensors directly embedded in the machine tool components, 2) an artificial intelligence module combining physical models, statistical models and machine-learning algorithms able to track individual health condition and supporting a large range of assets and dynamic operating conditions, 3) a secure integration module connecting the platform to production planning and maintenance systems via a private cloud and providing additional safety, self-healing and self-learning capabilities and 4) a human interface module including production dashboards and augmented reality interfaces for facilitating maintenance tasks.
The consortium includes 3 end-user factories, 3 machine-tool suppliers, 1 leading component supplier, 4 innovative SMEs, 3 research organizations and 3 academic institutions. Together, we will validate the platform in a broad spectrum of real-life industrial scenarios (low volume, high volume and continuous manufacturing). We will also demonstrate the direct impact of the platform on maintainability, availability, work safety and costs in order to document the results in detailed business cases for widespread industry dissemination and exploitation.

Status

CLOSED

Call topic

FOF-09-2017

Update Date

27-10-2022
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Factories of the Future Partnership (FoF) - Made in Europe Partnership (MiE)
H2020 - Factories of the Future
H2020-FOF-2017
FOF-09-2017 Novel design and predictive maintenance technologies for increased operating life of production systems
Horizon 2020
H2020-EU.2. INDUSTRIAL LEADERSHIP
H2020-EU.2.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
H2020-EU.2.1.5. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced manufacturing and processing
H2020-EU.2.1.5.1. Technologies for Factories of the Future
H2020-FOF-2017
FOF-09-2017 Novel design and predictive maintenance technologies for increased operating life of production systems