MULTIMODAL | Multimodal Sensory-Motorized Material Systems

Summary
WHAT:
MULTIMODAL will develop sensory-motorized material systems that perceive several coupled environmental stimuli and respond to a combination of these via controlled motor functions, shape-change or locomotion. The sensory-motorized materials will be “trained” to strengthen upon repetitive action, they can “heal” upon injury, and mechanically adapt to different environments. They will be utilized in the design of soft robots with autonomous and interactive functions.

HOW:
We will utilize shape-changing liquid crystal networks (LCNs) that undergo controlled untethered motions in response to photochemical, (photo)thermal, and humidity-triggered activation. Coupling between these stimuli will allow for gated control strategies over the shape changes. I expect that the gated control strategies, in combination with stimuli-induced diffusion from surface to bulk of the LCN, will enable advanced robotic functionalities. The diffusion process will be used for supramolecular crosslinking and formation of interpenetrated dynamic polymer networks with the LCN, to allow for trainable gaiting for versatile locomotion control. We will also make mechanically adaptable amphibious grippers for autonomous object recognition.

WHY:
Technological disruptions are often due to new materials and fabrication technologies. Paradigm changes on how materials are perceived have profound effects on our society, well-being, and the ways we see the world. Here, we strive for a paradigm change in robotic materials. By taking inspiration from biological sensory-motor interactions, we will develop MULTIMODAL materials with autonomous and interactive features. These features go far beyond the capabilities of conventional stimuli-responsive materials, allowing us to take inanimate, shape-changing materials one ambitious step closer to motor functions of living species.
Results, demos, etc. Show all and search (1)
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101045223
Start date: 01-01-2023
End date: 31-12-2027
Total budget - Public funding: 1 998 760,00 Euro - 1 998 760,00 Euro
Cordis data

Original description

WHAT:
MULTIMODAL will develop sensory-motorized material systems that perceive several coupled environmental stimuli and respond to a combination of these via controlled motor functions, shape-change or locomotion. The sensory-motorized materials will be “trained” to strengthen upon repetitive action, they can “heal” upon injury, and mechanically adapt to different environments. They will be utilized in the design of soft robots with autonomous and interactive functions.

HOW:
We will utilize shape-changing liquid crystal networks (LCNs) that undergo controlled untethered motions in response to photochemical, (photo)thermal, and humidity-triggered activation. Coupling between these stimuli will allow for gated control strategies over the shape changes. I expect that the gated control strategies, in combination with stimuli-induced diffusion from surface to bulk of the LCN, will enable advanced robotic functionalities. The diffusion process will be used for supramolecular crosslinking and formation of interpenetrated dynamic polymer networks with the LCN, to allow for trainable gaiting for versatile locomotion control. We will also make mechanically adaptable amphibious grippers for autonomous object recognition.

WHY:
Technological disruptions are often due to new materials and fabrication technologies. Paradigm changes on how materials are perceived have profound effects on our society, well-being, and the ways we see the world. Here, we strive for a paradigm change in robotic materials. By taking inspiration from biological sensory-motor interactions, we will develop MULTIMODAL materials with autonomous and interactive features. These features go far beyond the capabilities of conventional stimuli-responsive materials, allowing us to take inanimate, shape-changing materials one ambitious step closer to motor functions of living species.

Status

SIGNED

Call topic

ERC-2021-COG

Update Date

09-02-2023
Images
No images available.
Geographical location(s)