Summary
Animal development depends on precisely timed cell divisions, which ensure the formation of tissues and organs with specific architectures and functions. As cells differentiate and mature, they need to modify the expression of cell-cycle regulators in order to achieve tissue-specific division patterns. It is largely unknown how cells coordinate cell-cycle gene expression changes with developmental timing and how cell cycles can be altered to give rise to different tissue architectures and organ sizes.
DevCycle will address these questions by studying intestinal cell cycles in nematodes. I have recently pioneered tools to measure mRNA expression changes and chromatin modifications in purified intestinal cells from C. elegans, which we will use to uncover how the expression of cell-cycle genes is changing during development and to identify novel regulators that control stage-specific gene expression. Moreover, I will implement a novel microfluidics platform for long-term imaging of larval development to identify the mechanisms that allow temporal coupling of cell cycle and development. This system will allow us to visualize and manipulate transcription factor gradients that direct intestinal cell cycles, providing unprecedented insights into how cell cycles are timed. Finally, I will analyse the mechanisms that control cell-cycle behaviour in P. redivivus, a related nematode in which intestinal cells undergo a slightly different cell-cycle pattern. Expanding our analyses to this species will empower us to investigate how cell-cycle patterns can diversify to generate phenotypic variability.
Together, this research program will develop a mechanistic understanding of the temporal control of cell cycles in development, revealing new paradigms on how tissue-specific division patterns arise. This knowledge will open up future avenues to modulate cell cycles for tissue engineering purposes, as well as to control cell divisions in disease.
DevCycle will address these questions by studying intestinal cell cycles in nematodes. I have recently pioneered tools to measure mRNA expression changes and chromatin modifications in purified intestinal cells from C. elegans, which we will use to uncover how the expression of cell-cycle genes is changing during development and to identify novel regulators that control stage-specific gene expression. Moreover, I will implement a novel microfluidics platform for long-term imaging of larval development to identify the mechanisms that allow temporal coupling of cell cycle and development. This system will allow us to visualize and manipulate transcription factor gradients that direct intestinal cell cycles, providing unprecedented insights into how cell cycles are timed. Finally, I will analyse the mechanisms that control cell-cycle behaviour in P. redivivus, a related nematode in which intestinal cells undergo a slightly different cell-cycle pattern. Expanding our analyses to this species will empower us to investigate how cell-cycle patterns can diversify to generate phenotypic variability.
Together, this research program will develop a mechanistic understanding of the temporal control of cell cycles in development, revealing new paradigms on how tissue-specific division patterns arise. This knowledge will open up future avenues to modulate cell cycles for tissue engineering purposes, as well as to control cell divisions in disease.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101040020 |
Start date: | 01-06-2022 |
End date: | 31-05-2027 |
Total budget - Public funding: | 1 500 000,00 Euro - 1 500 000,00 Euro |
Cordis data
Original description
Animal development depends on precisely timed cell divisions, which ensure the formation of tissues and organs with specific architectures and functions. As cells differentiate and mature, they need to modify the expression of cell-cycle regulators in order to achieve tissue-specific division patterns. It is largely unknown how cells coordinate cell-cycle gene expression changes with developmental timing and how cell cycles can be altered to give rise to different tissue architectures and organ sizes.DevCycle will address these questions by studying intestinal cell cycles in nematodes. I have recently pioneered tools to measure mRNA expression changes and chromatin modifications in purified intestinal cells from C. elegans, which we will use to uncover how the expression of cell-cycle genes is changing during development and to identify novel regulators that control stage-specific gene expression. Moreover, I will implement a novel microfluidics platform for long-term imaging of larval development to identify the mechanisms that allow temporal coupling of cell cycle and development. This system will allow us to visualize and manipulate transcription factor gradients that direct intestinal cell cycles, providing unprecedented insights into how cell cycles are timed. Finally, I will analyse the mechanisms that control cell-cycle behaviour in P. redivivus, a related nematode in which intestinal cells undergo a slightly different cell-cycle pattern. Expanding our analyses to this species will empower us to investigate how cell-cycle patterns can diversify to generate phenotypic variability.
Together, this research program will develop a mechanistic understanding of the temporal control of cell cycles in development, revealing new paradigms on how tissue-specific division patterns arise. This knowledge will open up future avenues to modulate cell cycles for tissue engineering purposes, as well as to control cell divisions in disease.
Status
SIGNEDCall topic
ERC-2021-STGUpdate Date
09-02-2023
Images
No images available.
Geographical location(s)