Summary
Over the past decades, implantable biomedical systems have greatly advanced, offering previously unavailable therapeutic options for millions of patients worldwide. Such applications most commonly utilize conventional lithium-ion batteries as the energy source. However, while readily providing adequate energetic performance, lithium-ion batteries are inflexible, rigid, may contain toxic substances, and require periodic replacement surgeries due to their limited capacity, posing both health risks and an economical burden. Here, aiming to address these issues, we will develop PepZoPower, a biocompatible energy harvesting, and storage device designed for biomedical applications. Energy harvesting will be facilitated by highly-efficient piezoelectric peptide-based assemblies allowing to harvest mechanical energy from the human body and convert it into electric energy. The harvested mechanical energy will be stored by a biocompatible peptide-based supercapacitor, thus giving rise to an autonomous, miniaturized, controllable, and biocompatible power device with adequate performance and mechanical properties. This ambitious goal will be achieved by utilizing our patent-protected piezoelectric and energy storage peptide-based supramolecular structures, to be incorporated into an integrated device. The performance of each layer will be optimized and the integrated PepZoPower device will be validated to verify efficient incorporation of the two components. We envision the breakthrough PepZoPower technology to serve as the basis for the next leap toward biocompatible, soft, miniaturized, light-weight and morphologically-controllable implantable devices. This will pave the way towards post-project commercial exploitation of the PepZoPower system, which will be further developed by a spin-off company to be integrated into implantable devices ranging from cardiac defibrillators to spinal cords stimulators, opening a huge market opportunity for this radically new technology.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101101071 |
Start date: | 01-12-2022 |
End date: | 30-11-2024 |
Total budget - Public funding: | - 150 000,00 Euro |
Cordis data
Original description
Over the past decades, implantable biomedical systems have greatly advanced, offering previously unavailable therapeutic options for millions of patients worldwide. Such applications most commonly utilize conventional lithium-ion batteries as the energy source. However, while readily providing adequate energetic performance, lithium-ion batteries are inflexible, rigid, may contain toxic substances, and require periodic replacement surgeries due to their limited capacity, posing both health risks and an economical burden. Here, aiming to address these issues, we will develop PepZoPower, a biocompatible energy harvesting, and storage device designed for biomedical applications. Energy harvesting will be facilitated by highly-efficient piezoelectric peptide-based assemblies allowing to harvest mechanical energy from the human body and convert it into electric energy. The harvested mechanical energy will be stored by a biocompatible peptide-based supercapacitor, thus giving rise to an autonomous, miniaturized, controllable, and biocompatible power device with adequate performance and mechanical properties. This ambitious goal will be achieved by utilizing our patent-protected piezoelectric and energy storage peptide-based supramolecular structures, to be incorporated into an integrated device. The performance of each layer will be optimized and the integrated PepZoPower device will be validated to verify efficient incorporation of the two components. We envision the breakthrough PepZoPower technology to serve as the basis for the next leap toward biocompatible, soft, miniaturized, light-weight and morphologically-controllable implantable devices. This will pave the way towards post-project commercial exploitation of the PepZoPower system, which will be further developed by a spin-off company to be integrated into implantable devices ranging from cardiac defibrillators to spinal cords stimulators, opening a huge market opportunity for this radically new technology.Status
SIGNEDCall topic
ERC-2022-POC2Update Date
09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping