Summary
In this ERC Proof of Concept, we want to develop a wearable fluidic force feedback device for upper and lower limb prostheses, composed by soft silicone chambers along with their actuation and control units, to exert pressures in multiple specific stump sites. This solution, named Wearable Integrated Soft Haptic device (WISH), strives to achieve both good modality matching (MM) and somatotopic matching (SM), while keeping non-invasive and practicable. The principle, preliminarily demonstrated on a single subject and one prosthesis type to display one type of force/tactile information, has the potential to generalize in several directions. Our goal is to transform WISH into a technology platform supporting different devices for different types of prosthesis available in the market, for both upper and lower limbs. We will depend on user involvement, team with hospitals and rehabilitation units, and work with companies producing prostheses (see endorsement letters) to acquire domain specific knowledge and to test our devices in real use cases. Through this project, our Technology Readiness Level will increase from 3 to 4/5 and enable us to apply for an EIC Transition for subsequent development and validation in a larger cohort. To the best of our knowledge, no other haptic display technology for prosthesis users has ever reached such maturity and readiness level, which makes this opportunity unique.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101069179 |
Start date: | 01-07-2022 |
End date: | 31-12-2023 |
Total budget - Public funding: | - 150 000,00 Euro |
Cordis data
Original description
In this ERC Proof of Concept, we want to develop a wearable fluidic force feedback device for upper and lower limb prostheses, composed by soft silicone chambers along with their actuation and control units, to exert pressures in multiple specific stump sites. This solution, named Wearable Integrated Soft Haptic device (WISH), strives to achieve both good modality matching (MM) and somatotopic matching (SM), while keeping non-invasive and practicable. The principle, preliminarily demonstrated on a single subject and one prosthesis type to display one type of force/tactile information, has the potential to generalize in several directions. Our goal is to transform WISH into a technology platform supporting different devices for different types of prosthesis available in the market, for both upper and lower limbs. We will depend on user involvement, team with hospitals and rehabilitation units, and work with companies producing prostheses (see endorsement letters) to acquire domain specific knowledge and to test our devices in real use cases. Through this project, our Technology Readiness Level will increase from 3 to 4/5 and enable us to apply for an EIC Transition for subsequent development and validation in a larger cohort. To the best of our knowledge, no other haptic display technology for prosthesis users has ever reached such maturity and readiness level, which makes this opportunity unique.Status
SIGNEDCall topic
ERC-2022-POC1Update Date
09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping