LF-LB | Deep Label-Free Cell Imaging of Liquid Biopsies for Cancer Monitoring

Summary
We will develop and commercialize an innovative device for diagnosis and monitoring of cancer in liquid biopsies based on a label-free interferometric phase microscopy (IPM) unit, coupled with dedicated real-time artificial intelligence (AI) for cell classification. This device will materialize an innovative approach for the much-anticipated imaging flow cytometry, dramatically decreasing its costs, and improving patient care by accurate monitoring of cancer in the clinical lab from a simple lab test (liquid biopsy). The success of the project is dependent on four high-risk/high-gain aspects: (a) Building the first clinical IPM device. (b) Designing and manufacturing a disposable microfluidic device for imaging flow cytometry. (c) Obtaining high-enough acquisition and processing throughput in imaging flow cytometry of urine samples. (d) Training a deep natural network to detect cancer cells based on the information-deep label-free IPM images of cancer cells during flow. The proposed PoC project stems from my on-going ERC StG project that focuses on the application of IPM for grading the metastatic potential of cancer cells, as a basic-science research tool.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101100664
Start date: 01-01-2023
End date: 30-06-2024
Total budget - Public funding: - 150 000,00 Euro
Cordis data

Original description

We will develop and commercialize an innovative device for diagnosis and monitoring of cancer in liquid biopsies based on a label-free interferometric phase microscopy (IPM) unit, coupled with dedicated real-time artificial intelligence (AI) for cell classification. This device will materialize an innovative approach for the much-anticipated imaging flow cytometry, dramatically decreasing its costs, and improving patient care by accurate monitoring of cancer in the clinical lab from a simple lab test (liquid biopsy). The success of the project is dependent on four high-risk/high-gain aspects: (a) Building the first clinical IPM device. (b) Designing and manufacturing a disposable microfluidic device for imaging flow cytometry. (c) Obtaining high-enough acquisition and processing throughput in imaging flow cytometry of urine samples. (d) Training a deep natural network to detect cancer cells based on the information-deep label-free IPM images of cancer cells during flow. The proposed PoC project stems from my on-going ERC StG project that focuses on the application of IPM for grading the metastatic potential of cancer cells, as a basic-science research tool.

Status

SIGNED

Call topic

ERC-2022-POC2

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.0 Cross-cutting call topics
ERC-2022-POC2 ERC PROOF OF CONCEPT GRANTS2
HORIZON.1.1.1 Frontier science
ERC-2022-POC2 ERC PROOF OF CONCEPT GRANTS2