RAMBAS | Rigorous Approximations for Many-Body Quantum Systems

Summary
From first principles of quantum mechanics, physical properties of many-body quantum systems are usually encoded into Schroedinger equations. However, since the complexity of the Schroedinger equations grows so fast with the number of particles, it is generally impossible to solve them by current numerical techniques.
Therefore, in practice approximate theories are often applied, which focus only on some collective behaviors of the systems in question.
The corroboration of such effective models largely depends on mathematical methods. The overall goal of RAMBAS is to justify key effective approximations used in many-body quantum physics, including the mean-field, quasi-free, and random-phase approximations, as well as to derive subtle corrections in critical regimes.

Building on my unique expertise in mathematical physics, I will 1) develop general techniques to understand corrections to the mean-field and Bogoliubov approximations for dilute Bose gases, 2) introduce rigorous bosonization methods and combine them with existing techniques from the theory of Bose gases to understand Fermi gases, and 3) employ the bosonization structure of Fermi gases to study the many-body quantum dynamics in long time scales, thus deriving quantum kinetic equations.

By applying and suitably inventing mathematical techniques from functional analysis, spectral theory, calculus of variations and partial differential equations, RAMBAS will take standard approximations of quantum systems to the next level, with special focus on those particularly challenging situations where the particle correlation plays a central role but is yet not adequately addressed. RAMBAS will thereby provide the physics community with crucial mathematical tools, which are at the same time rigorous and applicable.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101044249
Start date: 01-10-2022
End date: 30-09-2027
Total budget - Public funding: 1 963 290,00 Euro - 1 963 290,00 Euro
Cordis data

Original description

From first principles of quantum mechanics, physical properties of many-body quantum systems are usually encoded into Schroedinger equations. However, since the complexity of the Schroedinger equations grows so fast with the number of particles, it is generally impossible to solve them by current numerical techniques.
Therefore, in practice approximate theories are often applied, which focus only on some collective behaviors of the systems in question.
The corroboration of such effective models largely depends on mathematical methods. The overall goal of RAMBAS is to justify key effective approximations used in many-body quantum physics, including the mean-field, quasi-free, and random-phase approximations, as well as to derive subtle corrections in critical regimes.

Building on my unique expertise in mathematical physics, I will 1) develop general techniques to understand corrections to the mean-field and Bogoliubov approximations for dilute Bose gases, 2) introduce rigorous bosonization methods and combine them with existing techniques from the theory of Bose gases to understand Fermi gases, and 3) employ the bosonization structure of Fermi gases to study the many-body quantum dynamics in long time scales, thus deriving quantum kinetic equations.

By applying and suitably inventing mathematical techniques from functional analysis, spectral theory, calculus of variations and partial differential equations, RAMBAS will take standard approximations of quantum systems to the next level, with special focus on those particularly challenging situations where the particle correlation plays a central role but is yet not adequately addressed. RAMBAS will thereby provide the physics community with crucial mathematical tools, which are at the same time rigorous and applicable.

Status

SIGNED

Call topic

ERC-2021-COG

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.0 Cross-cutting call topics
ERC-2021-COG ERC CONSOLIDATOR GRANTS
HORIZON.1.1.1 Frontier science
ERC-2021-COG ERC CONSOLIDATOR GRANTS