HIGH-Q | Breaking resolution limits in ultrafast X-ray diffractive imaging

Summary
Our ability to observe processes and study function at the nanoscale is hindered by the compromise between temporal and spatial resolutions inherent to the majority of far-field imaging techniques. This limits our perspective on a wide range of non-equilibrium processes at the nanoscale such as chemical/catalytic reactions, ultrafast phase-transitions and biological processes at room temperature in native phase. Intense and spatially coherent femtosecond-short X-ray flashes from free-electron laser (XFEL) sources can combine high spatial and temporal resolutions through 'diffraction-before-destruction' coherent diffractive imaging (CDI) of individual nano-specimens within a single exposure. XFEL CDI studies have found surprising variety of morphologies in soot, unknown metastable shapes of metal nanoparticles and exotic states of water, which are otherwise inaccessible. PI and colleagues applied this technique to follow an ultrafast irreversible laser-superheating process with few nanometers spatial and 100 femtosecond temporal resolutions at the single nanoparticle level.

Despite significant efforts, the spatial resolution of single XFEL CDI images of non-periodic specimen could not be improved beyond few nanometers. This proposal will overcome this limit by exploiting previously little explored phenomena which arise when specimen are exposed to newly available intense 500 attosecond to few femtosecond short FEL pulses. All matter exposed to intense X-rays is photo-ionised. When XFEL pulses are comparable or shorter than subsequent relaxation processes, non-linear effects such as transient resonances and resonant stimulated emission increase the brightness of images by several orders of magnitudes and significantly improve the spatial resolution. In combination with sparsity based reconstruction algorithms this proposal will push ultrafast CDI towards the single macromolecule limit and open novel avenues for photochemistry, catalysis, and material studies.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101040547
Start date: 01-04-2022
End date: 31-03-2027
Total budget - Public funding: 1 500 000,00 Euro - 1 500 000,00 Euro
Cordis data

Original description

Our ability to observe processes and study function at the nanoscale is hindered by the compromise between temporal and spatial resolutions inherent to the majority of far-field imaging techniques. This limits our perspective on a wide range of non-equilibrium processes at the nanoscale such as chemical/catalytic reactions, ultrafast phase-transitions and biological processes at room temperature in native phase. Intense and spatially coherent femtosecond-short X-ray flashes from free-electron laser (XFEL) sources can combine high spatial and temporal resolutions through 'diffraction-before-destruction' coherent diffractive imaging (CDI) of individual nano-specimens within a single exposure. XFEL CDI studies have found surprising variety of morphologies in soot, unknown metastable shapes of metal nanoparticles and exotic states of water, which are otherwise inaccessible. PI and colleagues applied this technique to follow an ultrafast irreversible laser-superheating process with few nanometers spatial and 100 femtosecond temporal resolutions at the single nanoparticle level.

Despite significant efforts, the spatial resolution of single XFEL CDI images of non-periodic specimen could not be improved beyond few nanometers. This proposal will overcome this limit by exploiting previously little explored phenomena which arise when specimen are exposed to newly available intense 500 attosecond to few femtosecond short FEL pulses. All matter exposed to intense X-rays is photo-ionised. When XFEL pulses are comparable or shorter than subsequent relaxation processes, non-linear effects such as transient resonances and resonant stimulated emission increase the brightness of images by several orders of magnitudes and significantly improve the spatial resolution. In combination with sparsity based reconstruction algorithms this proposal will push ultrafast CDI towards the single macromolecule limit and open novel avenues for photochemistry, catalysis, and material studies.

Status

SIGNED

Call topic

ERC-2021-STG

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.0 Cross-cutting call topics
ERC-2021-STG ERC STARTING GRANTS
HORIZON.1.1.1 Frontier science
ERC-2021-STG ERC STARTING GRANTS