Tied2Teeth | Expanding our understanding of human evolution through pleiotropy

Summary
Teeth dominate the fossil and bioarchaeological records because they consist mostly of inorganic material. Consequently, dental anthropology has long been essential in our investigation of the human past. Variation in the anatomy of teeth is instrumental for differentiating species, identifying biological affinities between populations, making inferences about dietary adaptations, and timing key developmental life stages. However, recent advances in genetics, genomics, and developmental biology undermine many assumptions built into anthropologists’ study of the dentition by revealing extensive pleiotropy—when one gene influences more than one anatomical structure simultaneously. However, this is not a setback but rather an advantage. In this project, we will use the pleiotropies that involve teeth to open windows to the evolution of human anatomies far beyond the dentition.

I will employ three methodological approaches that utilize pleiotropy to probe different aspects of human paleobiology. The first approach will use quantitative genetic analyses to calibrate the extent to which cranial evolution is genetically correlated with dental evolution. In the second approach, we will employ large historical morphological datasets combined with the modern insight from genome-wide-association-studies (GWAS) to explore how the evolution of soft-tissue anatomy may have driven changes in the dentition. Finally, we will turn to the fossil record. Using traits that were defined using a pleiotropic approach, we will test the hypothesis that environmental selection influenced dental variation during two key time periods within the evolution of genus Homo.

This project modernizes the study of the human past by incorporating the phenomenon of dental pleiotropy. By combining these three different approaches and a range of time scales, we turn the conundrum of pleiotropy into a powerful tool for studying human evolution.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101054659
Start date: 01-11-2022
End date: 31-10-2027
Total budget - Public funding: 2 252 167,50 Euro - 2 252 167,00 Euro
Cordis data

Original description

Teeth dominate the fossil and bioarchaeological records because they consist mostly of inorganic material. Consequently, dental anthropology has long been essential in our investigation of the human past. Variation in the anatomy of teeth is instrumental for differentiating species, identifying biological affinities between populations, making inferences about dietary adaptations, and timing key developmental life stages. However, recent advances in genetics, genomics, and developmental biology undermine many assumptions built into anthropologists’ study of the dentition by revealing extensive pleiotropy—when one gene influences more than one anatomical structure simultaneously. However, this is not a setback but rather an advantage. In this project, we will use the pleiotropies that involve teeth to open windows to the evolution of human anatomies far beyond the dentition.

I will employ three methodological approaches that utilize pleiotropy to probe different aspects of human paleobiology. The first approach will use quantitative genetic analyses to calibrate the extent to which cranial evolution is genetically correlated with dental evolution. In the second approach, we will employ large historical morphological datasets combined with the modern insight from genome-wide-association-studies (GWAS) to explore how the evolution of soft-tissue anatomy may have driven changes in the dentition. Finally, we will turn to the fossil record. Using traits that were defined using a pleiotropic approach, we will test the hypothesis that environmental selection influenced dental variation during two key time periods within the evolution of genus Homo.

This project modernizes the study of the human past by incorporating the phenomenon of dental pleiotropy. By combining these three different approaches and a range of time scales, we turn the conundrum of pleiotropy into a powerful tool for studying human evolution.

Status

SIGNED

Call topic

ERC-2021-ADG

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.0 Cross-cutting call topics
ERC-2021-ADG ERC ADVANCED GRANTS
HORIZON.1.1.1 Frontier science
ERC-2021-ADG ERC ADVANCED GRANTS