Summary
The scientific frontier project C-Quest will study algal sugar polymers - glycans - in the ocean to resolve their contribution to global carbon cycling and sequestration. C-Quest will explore the hypothesis that marine diatoms, which fix similar amounts of carbon as tropical forests on a global scale, secrete glycan types that are stable, meaning harder to degrade for bacteria than other substrates. This stability results in glyco-carbon sequestration removing the greenhouse gas carbon dioxide from the atmosphere. C-Quest will identify and quantify glycan structural types in seawater, where salt, low glycan concentration and their high molecular diversity challenge classic analytical techniques. With two articles in PNAS (2020) and Nature Communications (2021), implementing bioanalytical strategies to measure glycans in the ocean, we broke through the glyco-carbon challenge setting the stage for testing the glyco-carbon sequestration hypothesis. In the test tube, my team will reveal marine bacterial enzymatic degradation pathways that degrade diatom glycans. Our characterized enzymes will become analytical tools to identify and quantify these glycans across the ocean. In different oceanic regions, we will quantify glycan production during algal blooms, glycan export in sinking particles and glycan burial in sediments to pinpoint the types that have a high potential to sequester carbon. The outcome will be knowledge of glycan contribution to carbon sequestration shedding light into what remains a black box of the global carbon cycle to this day. C-Quest will discover enzymes new to science, explore the potential of glycans for carbon sequestration and reveal molecular principles that govern carbon sequestration in and beyond the ocean.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101044738 |
Start date: | 01-10-2022 |
End date: | 30-09-2027 |
Total budget - Public funding: | 2 277 248,00 Euro - 2 277 248,00 Euro |
Cordis data
Original description
The scientific frontier project C-Quest will study algal sugar polymers - glycans - in the ocean to resolve their contribution to global carbon cycling and sequestration. C-Quest will explore the hypothesis that marine diatoms, which fix similar amounts of carbon as tropical forests on a global scale, secrete glycan types that are stable, meaning harder to degrade for bacteria than other substrates. This stability results in glyco-carbon sequestration removing the greenhouse gas carbon dioxide from the atmosphere. C-Quest will identify and quantify glycan structural types in seawater, where salt, low glycan concentration and their high molecular diversity challenge classic analytical techniques. With two articles in PNAS (2020) and Nature Communications (2021), implementing bioanalytical strategies to measure glycans in the ocean, we broke through the glyco-carbon challenge setting the stage for testing the glyco-carbon sequestration hypothesis. In the test tube, my team will reveal marine bacterial enzymatic degradation pathways that degrade diatom glycans. Our characterized enzymes will become analytical tools to identify and quantify these glycans across the ocean. In different oceanic regions, we will quantify glycan production during algal blooms, glycan export in sinking particles and glycan burial in sediments to pinpoint the types that have a high potential to sequester carbon. The outcome will be knowledge of glycan contribution to carbon sequestration shedding light into what remains a black box of the global carbon cycle to this day. C-Quest will discover enzymes new to science, explore the potential of glycans for carbon sequestration and reveal molecular principles that govern carbon sequestration in and beyond the ocean.Status
SIGNEDCall topic
ERC-2021-COGUpdate Date
09-02-2023
Images
No images available.
Geographical location(s)